- 博客(147)
- 收藏
- 关注
原创 NumPy 第十三课 -- 数组操作
函数会在指定位置(或位置数组)插入给定的值或数组,然后返回新的数组。需要注意的是,插入操作会返回一个新的数组,而不会改变原始数组。numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。numpy.hsplit 函数用于水平分割数组,通过指定要返回的相同形状的数组数量来拆分原数组。numpy.hstack 是 numpy.stack 函数的变体,它通过水平堆叠来生成数组。
2024-11-01 07:30:00 716
原创 NumPy 第十二课 -- 迭代数组
NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。迭代器最基本的任务的可以完成对数组元素的访问。接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。
2024-10-13 07:30:00 456
原创 NumPy 第十一课 -- 广播(Broadcast)
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。当运算中的 2 个数组的形状不同时,numpy 将自动触发广播机制。下面的图片展示了数组 b 如何通过广播来与数组 a 兼容。如果两个数组 a 和 b 形状相同,即满足。
2024-10-12 07:30:00 271
原创 NumPy 第十课 -- 高级索引
NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。NumPy 中的高级索引指的是使用整数数组、布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。
2024-10-11 07:30:00 1205
原创 NumPy 第九课 -- 切片和索引
ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。然后,分别设置起始,终止和步长的参数为 2,7 和 2。,来使选择元组的长度与数组的维度相同。如果在行位置使用省略号,它将返回包含行中元素的 ndarray。ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。,那么则提取两个索引(不包括停止索引)之间的项。
2024-10-10 07:30:00 217
原创 NumPy 第五课 -- 数组属性
本章节我们将来了解 NumPy 数组的一些基本属性。NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
2024-10-06 07:30:00 856
原创 NumPy 第四课 -- 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。
2024-10-05 07:30:00 608
原创 NumPy 第三课 -- Ndarray 对象
ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。ndarray 中的每个元素在内存中都有相同存储大小的区域。一个表示数组形状(shape)的元组,表示各维度大小的元组。一个指向数据(内存或内存映射文件中的一块数据)的指针。
2024-10-04 07:30:00 403
原创 NumPy 第一课 -- 简介
NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。
2024-10-02 07:30:00 481
原创 FastAPI 第九课 -- 表单数据
在 FastAPI 中,接收表单数据是一种常见的操作,通常用于处理用户通过 HTML 表单提交的数据。FastAPI 提供了 Form 类型,可以用于声明和验证表单数据。
2024-10-01 07:30:00 613 1
原创 FastAPI 第八课 -- 路径操作依赖项
FastAPI 提供了简单易用,但功能强大的依赖注入系统,这个依赖系统设计的简单易用,可以让开发人员轻松地把组件集成至 FastAPI。FastAPI 提供了路径操作依赖项(Path Operation Dependencies)的机制,允许你在路由处理函数执行之前或之后运行一些额外的逻辑。依赖项就是一个函数,且可以使用与路径操作函数相同的参数。路径操作依赖项提供了一种灵活的方式来组织代码、验证输入、进行身份验证等。接下来我们会具体介绍 FastAPI 路径操作依赖项的相关知识点。
2024-09-30 07:30:00 1887
原创 FastAPI 第七课 -- Pydantic 模型
使用 Pydantic 定义一个模型非常简单,只需创建一个继承自 pydantic.BaseModel 的类,并在其中定义字段。字段的类型可以是任何有效的 Python 类型,也可以是 Pydantic 内置的类型。name: str以上代码中中,我们定义了一个名为 Item 的 Pydantic 模型,包含了四个字段:name、description、price 和 tax,name 和 price 是必需的字段,而 description 和 tax 是可选的字段,其。
2024-09-29 08:11:37 980
原创 FastAPI 第六课 -- 请求和响应
在 FastAPI 中,请求(Request)和响应(Response)是与客户端交互的核心。FastAPI 提供了强大的工具来解析请求数据,并根据需要生成规范的响应。接下来我们来详细看下 FastAPI 的请求和响应。
2024-09-28 07:30:00 1032
原创 FastAPI 第五课 -- 基本路由
在 FastAPI 中,基本路由是定义 API 端点的关键。每个路由都映射到应用程序中的一个函数,用于处理特定的 HTTP 请求,并返回相应的响应。
2024-09-27 07:30:00 876
原创 FastAPI 第四课 -- 交互式 API 文档
FastAPI 提供了内置的交互式 API 文档,使开发者能够轻松了解和测试 API 的各个端点。这个文档是自动生成的,基于 OpenAPI 规范,支持 Swagger UI 和 ReDoc 两种交互式界面。通过 FastAPI 的交互式 API 文档,开发者能够更轻松地理解和使用 API,提高开发效率在运行 FastAPI 应用时,Uvicorn 同时启动了交互式 API 文档服务。
2024-09-26 07:30:00 844
原创 FastAPI 第三课 -- 第一个 FastAPI 应用
你应该能够看到 FastAPI 自动生成的交互式文档,并在根路径 ("/") 返回的 JSON 响应。这个路由操作使用了 @app.get("/items/{item_id}") 装饰器,表示当用户通过。在这一步,创建了一个 FastAPI 应用的实例,它将用于定义和管理应用的各个组件,包括路由。这个路由操作使用了 @app.get("/") 装饰器,表示当用户通过。以上实例导入了 Union 类型,用于支持多种数据类型的参数注解。函数返回一个字典,包含传入的 item_id 和 q 参数。
2024-09-25 07:30:00 443
原创 FastAPI 第二课 -- 安装
FastAPI 依赖 Python 3.8 及更高版本。安装 FastAPI 很简单,这里我们使用 pip 命令来安装。这样我们就安装完成了。
2024-09-24 07:30:00 334
原创 FastAPI 第一课 -- 简介
FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,专为在 Python 中构建 RESTful API 而设计。FastAPI 使用 Python 3.8+ 并基于标准的 Python 类型提示。FastAPI 建立在 Starlette 和 Pydantic 之上,利用类型提示进行数据处理,并自动生成API文档。FastAPI 于 2018 年 12 月 5 日发布第一版本,以其易用性、速度和稳健性在开发者中间迅速流行起来。
2024-09-23 07:30:00 428
原创 Flask 第十四课 -- 部署
Flask 部署是将你的 Flask 应用程序发布到生产环境中的过程,使其可以被用户访问。部署 Flask 应用涉及选择合适的服务器和环境配置。以下是常见的 Flask 部署方法和步骤,包括使用 WSGI 服务器和 Web 服务器,以及如何在不同平台上部署 Flask 应用。
2024-09-22 07:30:00 842
原创 Flask 第十三课 -- 中间件和扩展
Flask 还允许你创建自定义中间件类,这些中间件类可以在请求和响应处理的各个阶段进行操作。CustomMiddleware:自定义中间件类,添加一个自定义响应头。如果现有的扩展不能满足你的需求,你可以创建自己的扩展。创建自定义扩展通常涉及到定义一个类,提供初始化配置和相关功能。myextension.py 文件代码;MyExtension:自定义扩展,添加了一个自定义响应头。
2024-09-21 07:30:00 848
原创 Flask 第十二课 -- 错误处理
你可以定义自定义异常类,并在应用中捕获和处理这些异常。这允许你在应用中实现更复杂的错误处理逻辑。pass可以为每个错误码创建自定义的 HTML 页面,使得错误页面与应用的整体设计一致。yourapp/│├── app.py自定义错误页面示例:
2024-09-20 07:30:00 707
原创 Flask 第十一课 -- 蓝图 (Blueprints)
Blueprint('auth', __name__):创建一个名为 auth 的蓝图。蓝图中定义的路由函数可以用来处理请求。Blueprint('blog', __name__):创建一个名为 blog 的蓝图。蓝图也可以定义自己的错误处理函数。
2024-09-19 07:30:00 443
原创 Flask 第十课 -- 数据库操作
模型是数据库表的 Python 类,每个模型类代表数据库中的一张表。db.Model:所有模型类需要继承自 db.Model。db.Column:定义模型的字段,指定字段的类型、是否为主键、是否唯一、是否可以为空等属性。db.create_all() # 创建数据库表。
2024-09-18 07:30:00 640
原创 Flask 第九课 -- 表单处理
在 Flask 中,表单处理是构建 Web 应用时一个常见的需求。处理表单数据涉及到接收、验证和处理用户提交的表单。Flask 提供了基本的表单处理功能,但通常结合 Flask-WTF 扩展来简化表单操作和验证。
2024-09-17 07:30:00 711
原创 Flask 第八课 -- 模板渲染
模板是包含占位符的 HTML 文件。Flask 使用 Jinja2 模板引擎来处理模板渲染。模板渲染允许你将动态内容插入到 HTML 页面中,使得应用能够生成动态的网页内容。以下是关于 Flask 模板渲染的详细说明,包括如何创建和使用模板、模板继承、控制结构等。templates。
2024-09-16 07:30:00 1246
原创 Flask 第七课 -- 视图函数
视图函数是一个普通的 Python 函数,它接收请求并返回响应。视图函数通常与路由配合使用,通过装饰器将 URL 映射到视图函数。:将根 URL映射到home视图函数。def home():视图函数,返回字符串作为响应。
2024-09-15 07:30:00 845
原创 Flask 第五课 -- 项目结构
一个 Flask 应用可以简单到只有一个文件。然而,当项目变大时,把所有代码都放到一个文件里不太现实。Flask 项目结构可以根据应用的规模和复杂性有所不同。以下是几种常见的 Flask 项目结构,分别适用于简单应用和较复杂的应用。
2024-09-13 07:30:00 802
原创 Flask 第四课 -- 基本概念
上一个章节我们已经学会了如何创建第一个 Flask 应用,本章节我们将来详细了解 Flask 的一些基本概念。了解 Flask 的基本概念对于开发高效的 Web 应用非常重要。路由:路由是 URL 到 Python 函数的映射。Flask 允许你定义路由,这样当特定的 URL 被访问时,就会调用相应的函数。视图函数:视图函数是处理请求并返回响应的 Python 函数。它们通常接收请求对象作为参数,并返回响应对象。请求对象:请求对象包含了客户端发送的请求信息,如请求方法、URL、请求头、表单数据等。
2024-09-12 07:30:00 1191
原创 Flask 第三课 -- 第一个应用
上一章节我们已经成功安装了 Flask,接下来我们可以创建一个简单的 Flask 应用。打开浏览器,访问 http://127.0.0.1:5000/,应该会看到 "Hello, World!" 的消息,表示 Flask 已成功安装并运行。
2024-09-11 07:30:00 317
原创 Flask 第二课 -- 安装
Flask 是 Python的一个库,所以首先需要确保你的计算机上已经安装了 Python。Flask 需要 Python 3.6 及以上版本,先确保你已安装 Python 3。我们可以使用 Python 的包管理器 pip 可以用来安装Flask。这样我们就成功安装了 Flask 包。Flask 安装还是比较简单的。
2024-09-10 07:30:00 249
原创 Flask 第一课 -- 简单入门
Flask 是一个用 Python 编写的轻量级 Web 应用框架。Flask 基于 WSGI(Web Server Gateway Interface)和 Jinja2 模板引擎,旨在帮助开发者快速、简便地创建 Web 应用。Flask 被称为"微框架",因为它使用简单的核心,用扩展增加其他功能。
2024-09-09 07:30:00 806
原创 Django 第十八课 -- Nginx+uwsgi 安装配置
在前面的章节中我们使用来运行服务器。这只适用测试环境中使用。正式发布的服务,我们需要一个可以稳定而持续的服务器,比如apache, Nginx, lighttpd等,本文将以 Nginx 为例。
2024-09-08 07:30:00 669
原创 Django 第十七课 -- 视图 - FBV 与 CBV
基于函数的视图,就是在视图里使用函数处理请求。基于类的视图,就是在视图里使用类处理请求。
2024-09-07 07:30:00 183
原创 Django 第十六课 -- 中间件
自定义中间件类的方法有:process_request 和 process_response。2.1. process_request 方法process_request 方法有一个参数 request,这个 request 和视图函数中的 request 是一样的。process_request 方法的返回值可以是 None 也可以是 HttpResponse 对象。返回值是 None 的话,按正常流程继续走,交给下一个中间件处理。
2024-09-06 07:30:00 1596
原创 Django 第十五课 -- cookie 与 session
Cookie 是存储在客户端计算机上的文本文件,并保留了各种跟踪信息。HTTP 是一种"无状态"协议,这意味着每次客户端检索网页时,客户端打开一个单独的连接到 Web 服务器,服务器会自动不保留之前客户端请求的任何记录。
2024-09-05 07:30:00 756
美食推荐平台小程序-毕业设计,微信小程序+Python+Django+Vue+MySql开发,源码+数据库+毕业论文+视频演示
2024-11-16
UniApp开发的记账小程序-uniapp-keep-accounts-master.zip
2024-11-14
python基础之综合练习一-38.黑色星期五Friday the Thirteenth-13日.py
2024-11-08
python基础之综合练习一-37.贪婪的送礼者Greedy Gift Givers-这是你的,这是他的~.py
2024-11-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人