PCA和SVD总结

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mn_kw/article/details/79971935

1. PCA用来提取一个场的主要信息(主成分分量),而SVD一般用来分析俩个场的相关关系。俩者在具体的实现方法上也有不同,SVD是通过矩阵奇异值分解的方法分解俩个长的协方差矩阵的,而PCA是通过分解一个场的协方差举证

2. PCA可用于特征的压缩、降维;当然也能去噪等;如果将矩阵转置后再用PCA,相当于去除相关度过大的样本数据--但不常见;SVD能够对一般矩阵分解,并可用于个性化推荐内容。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页