mn_kw的博客

我就是我,不一样的IT男

PCA和SVD总结

1. PCA用来提取一个场的主要信息(主成分分量),而SVD一般用来分析俩个场的相关关系。俩者在具体的实现方法上也有不同,SVD是通过矩阵奇异值分解的方法分解俩个长的协方差矩阵的,而PCA是通过分解一个场的协方差举证

2. PCA可用于特征的压缩、降维;当然也能去噪等;如果将矩阵转置后再用PCA,相当于去除相关度过大的样本数据--但不常见;SVD能够对一般矩阵分解,并可用于个性化推荐内容。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mn_kw/article/details/79971935
文章标签: PCA
个人分类: 算法
上一篇SVD
下一篇NLTK
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭