PCA和SVD总结

标签: PCA
0人阅读 评论(0) 收藏 举报
分类:

1. PCA用来提取一个场的主要信息(主成分分量),而SVD一般用来分析俩个场的相关关系。俩者在具体的实现方法上也有不同,SVD是通过矩阵奇异值分解的方法分解俩个长的协方差矩阵的,而PCA是通过分解一个场的协方差举证

2. PCA可用于特征的压缩、降维;当然也能去噪等;如果将矩阵转置后再用PCA,相当于去除相关度过大的样本数据--但不常见;SVD能够对一般矩阵分解,并可用于个性化推荐内容。

查看评论

从PCA和SVD的关系拾遗

从PCA和SVD的关系拾遗最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由...
  • Dark_Scope
  • Dark_Scope
  • 2016-11-13 19:38:27
  • 18232

主成份(PCA)与奇异值分解(SVD)的通俗解释

主成分分析 1.问题描述   在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程...
  • hongqiang200
  • hongqiang200
  • 2014-07-31 16:58:38
  • 14093

SVD、PCA小结

SVD的解法以及SVD与PCA之间的关系
  • u013164528
  • u013164528
  • 2015-04-26 15:13:39
  • 1123

PCA和SVD区别和联系

前言: PCA(principal component analysis)和SVD(Singular value decomposition)是两种常用的降维方法,在机器学习等领域有广泛的应用。本...
  • wangjian1204
  • wangjian1204
  • 2016-02-07 11:51:07
  • 16634

PCA使用SVD解决

http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html  主成分分析在上一节里面也讲了一些,这...
  • u011955252
  • u011955252
  • 2016-03-02 18:48:30
  • 949

SVD理解和其在PCA,LSI的应用

首先确实是觉得这篇文章写得很好,后面的附录也是非常值得一看 整体框架转自 http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and...
  • xietingcandice
  • xietingcandice
  • 2015-04-10 13:17:43
  • 1794

SVD与PCA,奇异值分解与主成分分析的比较

一般来说,想要获得低维的子空间,最简单的是对原始的高维空间进行线性变换(当然了,非线性也是可以的,如加入核函数,比较著名的就是KPCA)。SVD和PCA呢,都实现了降维与重构,但是呢,思路不太一样,老...
  • zhangdadadawei
  • zhangdadadawei
  • 2016-03-19 09:42:21
  • 7176

推荐系统构建中的PCA和SVD算法

推荐本质上是求相似度,重点是如何度量相似性。推荐的常用算法是协同过滤算法,该算法基于用户行为的数据而设计的推荐算法。M个人对N个商品产生行为,从而构成联系,对M个人进行聚类是基于用户(M1和M2相似,...
  • American199062
  • American199062
  • 2016-05-08 08:47:30
  • 1825

SVD分解与PCA

PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩...
  • u010545732
  • u010545732
  • 2014-01-31 07:40:06
  • 2474

PCA、SVD、协方差矩阵求解的关系和对比(例子说明)

基本上看下面这个图就知道了,如果想要验证,可以接着看下面的数据计算实例。 源数据X: 9*20,  9个样本, 20维   源数据     平均值     数据中心化:     PCA方法求解 [...
  • babywong
  • babywong
  • 2015-12-10 22:52:58
  • 2454
    个人资料
    等级:
    访问量: 6058
    积分: 362
    排名: 21万+
    文章存档
    最新评论