吴恩达机器学习可选实验使用教程

首先是环境配置

环境配置很简单,直接在anaconda里下载jupyter notebooks就可以了,然后可以通过命令行打开。
在这里插入图片描述
在这里插入图片描述
打开之后会跳转到浏览器,会看到以下页面
在这里插入图片描述

上传代码

吴恩达机器学习的相关代码github下载就好了,在哔哩哔哩上看的课,下面也有给下载地址,没有的也可以私聊我,无偿。
下面是下载好的代码
在这里插入图片描述
在刚刚打开的jupyter中点击新建文件夹,文件夹名字自己定义
在这里插入图片描述
然后把之前下载好的代码全部拷贝到新建的文件夹里就好啦
在这里插入图片描述

注意 这个地方图片需要和代码在一个目录下,不然打不开。
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习中占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
### 吴恩达机器学习实验室资源与教程 #### 获取吴恩达机器学习课程资料 对于希望获取吴恩达机器学习课程中的实验资源和教程的学习者来说,可以从多个途径获得所需材料。一个重要的资源库提供了该课程的PPT以及作业文件下载[^1]。 #### 使用GitHub上的代码资源 除了官方渠道外,还有其他社区成员分享了他们整理后的课程相关内容。例如,在GitHub上可以找到已经打包好的代码资源,方便学员直接用于本地环境测试或练习[^2]。 #### 关于Jupyter Notebook的操作指南 针对部分学生可能遇到的技术难题——如如何正确设置工作目录使得图像能够正常显示等问题也有了详细的说明;另外还提到了关于Jupyter Notebook这一常用工具的具体安装流程[^3]。 #### 特定功能实现案例分析 为了帮助理解某些特定概念的应用场景,比如ReLU激活函数的工作原理及其在网络层间传递信号时所起作用,则有专门绘制图形来辅助解释其行为模式的例子存在[^4]。 #### 综合性笔记汇总 最后值得一提的是,有人将整个系列课程的内容进行了总结归纳并上传至网盘供大众查阅学习,这无疑是对上述提到各项零散知识点的一个很好补充[^5]。 ```python import matplotlib.pyplot as plt def plt_act1(y, z, a): fig, ax = plt.subplots(1, 3, figsize=(15, 5)) # Plotting the three subplots to demonstrate activation function behavior and neuron influence. ax[0].plot(y) ax[0].set_title('Input Signal') ax[1].plot(z) ax[1].set_title('After Activation Function') ax[2].scatter(range(len(a)), a) ax[2].set_title('Neuron Influence Visualization') plt.show() ```
评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值