算法笔记——常见DP问题汇总

线性DP

线性DP主要是一类转移过程近似线性的dp问题,其状态转移过程近似于线性变换。

数字三角形

在这里插入图片描述
我们考虑其中的某一个点,到达该节点的路径只能从左上或者右上的节点到达,以该节点结束的所有路径最大值,为两条路径的最大值加上自己的值,因为每次遍历到一个节点,最大值就可以得到,且层层遍历,转移过程近似线性。

#include <iostream>
using namespace std;

const int N = 510, INF = 1e9;

int n;
int a[N][N];
int f[N][N];

int main()
{
    cin >> n;
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= i; j ++) cin >> a[i][j];
    }
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 0; j <= i + 1; j ++) f[i][j] = -INF;
    }
    
    f[1][1] = a[1][1];
    
    for(int i = 2; i <= n; i ++)
    {
        for(int j = 1; j <= i; j ++) 
            f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]);
    }
    
    int res = -INF;
    for(int i = 1; i <= n; i ++) res = max(res, f[n][i]);
    
    cout << res << endl;
    return 0;
}

最长上升子序列

最长上升子序列我们从第一个数开始枚举,每次都将位置 i i i之前的所有数枚举,求出小于该数的上升子序列最大值,再加1即为以位置 i i i结尾的上升子序列的最大值。
f [ i ] f[i] f[i]表示以 a [ i ] a[i] a[i]结尾的上升子序列的最大长度,我们每次从 0 0 0~ i − 1 i - 1 i1遍历,取最大值加一即可,时间复杂度为 O ( n 2 ) O(n^2) O(n2)

#include <iostream>
using namespace std;

const int N = 1010;

int a[N], f[N];
int n;

int main()
{
    cin >> n;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    
    f[1] = 1;
    for(int i = 2; i <= n; i ++)
    {
        f[i] = 1;
        for(int j = 1; j < i; j ++)
        {
            if(a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
        }
    }
    
    int res = 0;
    for(int i = 1; i <= n; i ++) res = max(res, f[i]);
    
    cout << res << endl;
    return 0;
}

二分优化:
我们思考得出,我们的上升子序列长度是递增的,且我们的上升子序列中的数值也是严格递增的,我们可以利用这个信息来优化,我们让 f [ i ] f[i] f[i]来表示上升子序列以长度 i i i结尾的最小数字,当 a [ i ] a[i] a[i]大于当前的数字,我们让长度加一,若小于当前最小数字,为了保持单调性,我们需要找到第一个大于 a [ i ] a[i] a[i]的数,并将其更新。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

const int N = 100010;

int a[N];
int n;

int main()
{
    cin >> n;
    for(int i = 0; i < n; i ++) cin >> a[i];
    
    vector<int> f;

    for(int x : a)
    {
        if(f.empty() || x > f.back()) f.push_back(x);
        else f[lower_bound(f.begin(),f.end(), x) - f.begin()] = x;
    }
    
    cout << f.size() << endl;
    return 0;
}

最长公共子序列

最长公共子序列问题我们用 i i i表示字符串 A A A的前 i i i个字符, j j j表示字符串 B B B的前 j j j个字符, f [ i , j ] f[i,j] f[i,j]表示前 i i i个字符和前 j j j个字符中的公共子序列的最大长度,对于以 a [ i ] , b [ j ] a[i],b[j] a[i],b[j]结尾的子序列,一共有四种情况,分别为包含或者不包含 a [ i ] , b [ j ] a[i], b[j] a[i],b[j],那么 f [ i , j ] f[i,j] f[i,j]可以由 f [ ] i − 1 , j − 1 ] , f [ i − 1 , j ] , f [ i , j − 1 ] , f [ i − 1 , j − 1 ] + 1 f[]i-1,j-1],f[i -1, j], f[i, j - 1], f[i - 1, j- 1] + 1 f[]i1,j1],f[i1,j],f[i,j1],f[i1,j1]+1四种情况求最大值可得到,其中 f [ i − 1 , j − 1 ] f[i-1,j-1] f[i1,j1]的情况包含在了 f [ i − 1 , j ] , f [ i , j − 1 ] f[i -1, j], f[i, j - 1] f[i1,j],f[i,j1]两种情况中,注意子序列中含 a [ i ] a[i] a[i],不含 b [ j ] b[j] b[j]的情况包含在了 f [ i , j − 1 ] f[i,j-1] f[i,j1]中,但两者并不相等。因为是求最大值,所以可以有重复的情况,只要求得所有情况的最大值即可。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 1010;

int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    for(int i = 1; i <= m; i ++) cin >> b[i];
    
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= m; j ++)
        {
            f[i][j] = max(f[i][j - 1], f[i - 1][j]);
            if(a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
        }
    }
    
    cout << f[n][m] << endl;
    return 0;
}

区间DP

石子合并

石子合并中为了求出从 1 1 1~ n n n合并的最小代价,我们可以尝试枚举最后一次合并的分界线位置,将问题划分为两个子问题,然后递归求解。在此过程中,我们可以求得从 i i i j j j石子合并的最小代价,为了求出所有情况,我们按照区间长度从小到大枚举。

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 310;

int n;
int s[N];
int f[N][N];

int main()
{
    cin >> n;
    for(int i = 1; i <= n; i ++)
    {
        cin >> s[i];
        s[i] += s[i - 1];
    }
    
    for(int len = 1; len < n; len ++)
    {
        for(int i = 1; i + len <= n; i ++)
        {
            int l = i, r = i + len;
            f[l][r] = 1e9;
            for(int k = l; k <= r; k ++)
            {
                f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
            }
        }
    }
    
    cout << f[1][n] << endl;
    return 0;
}

计数类DP

整数划分

整数划分问题可以看作完全背包问题,从 1 1 1 n n n个数中选,正好和是 j j j的所有集合,每个数可以选无数个。 f [ i , j ] = f [ i − 1 , j ] + f [ i − 1 , j − i ] + . . . + f [ i − 1 , j − s ∗ i ] f[i,j] = f[i-1,j]+f[i-1,j-i]+...+f[i-1,j-s*i] f[i,j]=f[i1,j]+f[i1,ji]+...+f[i1,jsi], f [ i , j − i ] = f [ i − 1 , j − i ] + f [ i − 1 , j − 2 i ] + . . . + f [ i − 1 , j − s ∗ i ] f[i,j - i] = f[i-1,j - i]+f[i-1,j-2i]+...+f[i-1,j-s*i] f[i,ji]=f[i1,ji]+f[i1,j2i]+...+f[i1,jsi],因此 f [ i , j ] = f [ i − 1 , j ] + f [ i , j − i ] f[i,j] = f[i-1,j]+f[i,j-i] f[i,j]=f[i1,j]+f[i,ji]

#include <iostream>
using namespace std;
const int N = 1010, M = 1e9 + 7;

int n;
int f[N];

int main()
{
    cin >> n;
    
    f[0] = 1;
    for(int i = 1; i <= n; i ++)
        for(int j = i; j <= n; j ++)
            f[j] = (f[j] + f[j - i]) % M;
            
    cout << f[n] << endl;
    return 0;
}

数位统计类DP

计数问题

分情况讨论:
,当统计0出现的次数时,因为第 i i i位之前的应该从1开始
在这里插入图片描述

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

int power10(int i)
{
    int res = 1;
    while(i --) res *= 10;
    return res;
}

int get_num(vector<int>& num, int l, int r)
{
    if(l < r) return 0;
    int res = 0;
    for(int i = l; i >= r; i --)
    {
        res = res * 10 + num[i];
    }
    
    return res;
}

int count(int n, int x)
{
    if(!n) return 0;
    
    //将每一位取出来
    vector<int> num;
    while (n){
        num.push_back(n % 10);
        n /= 10;
    }
    
    n = num.size();
    
    int res = 0;
    for(int i = n - 1 - !x; i >= 0; i --)
    {
        res += get_num(num, n - 1, i + 1) * power10(i);
        if(!x) res -= power10(i);
        
        if(num[i] == x) res += get_num(num, i - 1, 0) + 1;
        if(num[i] > x) res += power10(i);
    }
    
    return res;
    
    
    
}

int main()
{
    int a, b;
    while(cin >> a >> b, a || b)
    {
        if(a > b) swap(a, b);
        for(int i = 0; i < 10; i ++)
        {
            cout << count(b, i) - count(a - 1, i) << ' ';
        }
        cout << endl;
    }
}

状态压缩DP

蒙德里安的梦想

在这里插入图片描述
分析题目,当我们先摆横着放的方块,再摆放竖着放的方块,当横着放的小方块摆放完后,竖着放的方块也就确定了,因此总方案数应该等于只放横着的小方块的合法方案数。我们考虑每一列可以摆放成功的小方块,每一种情况可以由一个二进制数来表示,位数等于行数。我们用 f [ i , j ] f[i,j] f[i,j]来表示第 i i i列的第 j j j个状态的合法方案数,可以知道 f [ i , j ] f[i,j] f[i,j]可以由第 i − 1 i - 1 i1列的状态转移过来,只要第 i − 1 i-1 i1列的第 k k k个状态与第 i i i列的第 j j j个状态不重叠( j j j& k k k == 0),且摆放之后不存在连续奇数个0(无法竖着摆放,方案不合法),就代表 f [ i , j ] f[i,j] f[i,j]可以由 f [ i − 1 , k ] f[i-1,k] f[i1,k]转移过来,且 f [ i , j ] + = f [ i − 1 , k ] f[i,j] +=f[i-1,k] f[i,j]+=f[i1,k].
在这里插入图片描述

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 12, M = 1 << 12;

int n, m;
long long f[N][M];
bool st[M];

int main()
{
    while(cin >> n >> m, n || m)
    {
        memset(f, 0, sizeof f);
        
        //预处理奇数个0的状态,将其标记
        for(int i = 0; i < 1 << n; i ++)
        {
            st[i] = true;
            int cnt = 0;
            //将每一位取出来
            for(int j = 0; j < n; j ++)
            {
                if(i >> j & 1)
                {
                    if(cnt & 1)
                    {
                        st[i] = false;
                        break;
                    }
                }
                else cnt ++;
            }
            if(cnt & 1) st[i] = false;
        }
        
        f[0][0] = 1; //第0列只有竖着摆放一种情况
        for(int i = 1; i <= m; i ++)
        {
            for(int j = 0; j < 1 << n; j ++)
            {
                for(int k = 0; k < 1 << n; k ++)
                {
                    //是否可以从i-1列的第k个状态转移过来
                    if((j & k) == 0 && st[j | k])
                    {
                        f[i][k] += f[i - 1][j];
                    }
                }
            }
        }
        
        //第m列全0,就代表0~m-1列已经摆放合法
        cout << f[m][0] << endl;
    }
    
    return 0;
}

最短Hamilton路径

如果我们依次枚举所有点,时间复杂度为 O ( n ! ∗ n ) O(n!*n) O(n!n),因此我们用一个二进制的数来表示所有经过的情况,位数是1代表经过了这个点,我们还需要表示该种情况的终点是那个点,如000111表示经过了0到2号点,但我们并不知道终点是那个点,因此我们用 f [ i , j ] f[i,j] f[i,j]来表示,当前经过了 i i i个点且终点为 j j j最小代价, i i i就是我们用来表示所有情况的二进制数。我们要求从0到 n − 1 n -1 n1经过所有点,就代表 111... 111... 111...这个状态且终点为 n − 1 n-1 n1,我们可以思考该状态可以由那种状态转移过来,很显然是 011... 011... 011...这状态,而我们知道 011... 011... 011...这个状态是代表了很多终点不同的路径,我们只要枚举 011... 011... 011...该状态下,以终点 k k k结尾的路径再加上 k k k j j j的权重 w [ k , j ] w[k,j] w[k,j],求最小值即可。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 20, M = 1 << N;

int n;
int w[N][N];
int f[M][N];

int main()
{
    cin >> n;
    
    memset(w, 0x3f, sizeof w);
    for(int i = 0; i < n; i ++)
        for(int j = 0; j < n; j ++)
            cin >> w[i][j];
            
    memset(f, 0x3f, sizeof f);
    f[1][0] = 0; //初始时只有0号点
    for(int i = 0; i < 1 << n; i ++)
    {
        //枚举当前状态的最后一个点j
        for(int j = 0; j < n; j ++)
        {
            if((i >> j) & 1)
            {
                // i-(1<<j)是上一个状态,即j位上是0
                for(int k = 0; k < n; k ++)
                {
                    //枚举到上一个状态的终点k,求最小值
                    if(i - (1 << j) >> k & 1) 
                        f[i][j] = min(f[i][j], f[i - (1 << j)][k] + w[k][j]);
                }
            }
        }
    }
    
    cout << f[(1 << n) - 1][n - 1] << endl;
    return 0;
}

树形DP

没有上司的舞会

对于每一个根节点,我们求出包含该节点和不含该节点的最大值,其中包含该节点的最大值 f [ u , 1 ] f[u,1] f[u,1]应该等于不含其所有子节点的最大值之和,不包含该节点的最大值 f [ u , 0 ] f[u,0] f[u,0]应该等于其所有包含或者不包含子节点的最大值之和。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 6010;
int n;
int h[N], e[N], ne[N], idx;
int f[N][2];
int happy[N];
bool have[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}

int dfs(int u)
{
    f[u][1] = happy[u];//邀请某人,就要先把某人的加上
    
    for(int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        dfs(j); //递归求解每个子节点的最大利益
        f[u][0] += max(f[j][0], f[j][1]); //不邀请上司,要让下属的利益最大化
        f[u][1] += f[j][0]; //邀请上司,则下属都不来
    }
}
int main()
{
    cin >> n;
    memset(h, -1, sizeof h);
    for(int i = 1; i <= n; i ++) cin >> happy[i];
    
    for(int i = 1; i < n; i ++)
    {
        int a, b;
        cin >> a >> b;
        have[a] = true;//判断其有没有父节点
        add(b, a);
    }
    
    int root = 1;
    while(have[root]) root ++;//找到根节点
    
    dfs(root);
    
    int res = max(f[root][0], f[root][1]);
    cout << res << endl;
    
    return 0;
}

记忆化搜索

记忆化搜索=递归+备忘录
我们在求解一个问题时,将其拆分为子问题,递归求解每一个子问题的解,而在递归求解过程中,我们有时候会重复计算某一个状态的值,因此我们可以使用一个备忘录将其存下来,每次遍历到这个状态时直接返回即可。

滑雪

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 310;

int n, m;
int g[N][N];
int f[N][N];

int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};

int dfs(int x, int y)
{
    //状态已经计算过,就返回
    int& v = f[x][y];
    if(v != -1) return v;
    
    v = 1;
    for(int i = 0; i < 4; i ++)
    {
        int a = x + dx[i], b = y + dy[i];
        if(a > 0 && a <= n && b > 0 && b <= m && g[a][b] < g[x][y])
        {
            //递归求解每一个子问题的解
            v = max(v, dfs(a, b) + 1);
        }
    }
    
    return v;
}

int main()
{
    cin >> n >> m;
    
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= m; j ++)
            cin >> g[i][j];
            
    memset(f, -1, sizeof f);
    int res = 0;
    for(int i = 1; i <= n; i ++)
        for(int j = 1; j <= m; j ++)
            res = max(res, dfs(i, j));
    
    cout << res << endl;
    return 0;
}

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值