重庆大学2022级-第4次实验-运用函数编写程序

7-1 简单求阶乘问题

分数 10

作者 颜晖

单位 浙大城市学院

本题要求编写程序,计算N的阶乘。

输入格式:

输入在一行中给出一个不超过12的正整数N。

输出格式:

在一行中输出阶乘的值。

输入样例:

4

输出样例:

24

 

#include<iostream>
using namespace std;
int main()
{
    int N;
    cin>>N;
    long long int ans=1;
    for(int i=1;i<=N;i++)
    {
        ans*=i;
    }
    cout<<ans;
    return 0;
}

/* ******************************************************* */

7-2 谷歌的招聘

分数 20

作者 陈越

单位 浙江大学

2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。

自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。

本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。

输入格式:

输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。

输出格式:

在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。

输入样例 1:

20 5
23654987725541023819

输出样例 1:

49877

输入样例 2:

10 3
2468001680

输出样例 2:

404

 

#include<iostream>
#include<cmath>
#include <string.h>
#include<iomanip>
using namespace std;
bool isSushu(int x)
{
	if(x <=1)
	{
		return false;
	}
	for (int i = 2; i <= sqrt(x); i++)
	{
		if (x % i == 0)
			return false;
	}
	return true;
}
int main()
{
	bool ok = false;
	int L, K;
	cin >> L
		>> K;
	char shuzu[1000] = { '\0' };
	for (int i = 0; i < L; i++)
		cin >> shuzu[i];
	for (int i = 0; i <= L - K; i++)
	{
		int sum = 0;
		for (int j = K - 1 + i, l = 0; j >= i; j--, l++)
			sum += (int(shuzu[j] - '0') * pow(10, l));
		if (isSushu(sum) == true)
		{
			cout << setw(K) << setfill('0');
			cout << sum;
			ok = true;
			break;
		}
		else
			continue;
	}
	if (ok == false)
		cout << 404;
	return 0;
}

第二题我的代码感觉过于弱智

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值