7-1 简单求阶乘问题
分数 10
作者 颜晖
单位 浙大城市学院
本题要求编写程序,计算N的阶乘。
输入格式:
输入在一行中给出一个不超过12的正整数N。
输出格式:
在一行中输出阶乘的值。
输入样例:
4
输出样例:
24
#include<iostream>
using namespace std;
int main()
{
int N;
cin>>N;
long long int ans=1;
for(int i=1;i<=N;i++)
{
ans*=i;
}
cout<<ans;
return 0;
}
/* ******************************************************* */
7-2 谷歌的招聘
分数 20
作者 陈越
单位 浙江大学
2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921... 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出
404
。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。输入样例 1:
20 5 23654987725541023819
输出样例 1:
49877
输入样例 2:
10 3 2468001680
输出样例 2:
404
#include<iostream>
#include<cmath>
#include <string.h>
#include<iomanip>
using namespace std;
bool isSushu(int x)
{
if(x <=1)
{
return false;
}
for (int i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
return false;
}
return true;
}
int main()
{
bool ok = false;
int L, K;
cin >> L
>> K;
char shuzu[1000] = { '\0' };
for (int i = 0; i < L; i++)
cin >> shuzu[i];
for (int i = 0; i <= L - K; i++)
{
int sum = 0;
for (int j = K - 1 + i, l = 0; j >= i; j--, l++)
sum += (int(shuzu[j] - '0') * pow(10, l));
if (isSushu(sum) == true)
{
cout << setw(K) << setfill('0');
cout << sum;
ok = true;
break;
}
else
continue;
}
if (ok == false)
cout << 404;
return 0;
}
第二题我的代码感觉过于弱智