题目传送门
最大上升子序和
我们这样想,定义一个sum,和Max。sum从数组的第一个元素开始加,由题中我们知道,肯定会存在负数来影响判断。但是,如果当加上一个数组元素,这时的sum(也就是一个子串的和)为负数了。那么肯定对于后面的数(不管后面是啥,一个数加上一个负数,肯定更负)是没有用处的了,所以,前面的这个子段舍弃(sum = 0),然后sum再加上后面的数,继续前面这样的判断。同时你在sum每加上一次元素,就判断一次最大值。
下面是代码
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-10;
const int mod = 1e9 + 7;
const int II = 3.1415926535;
typedef long long ll;
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int n;
cin >> n;
int arr[n+5] = {0};
for(int i = 0;i < n;i++)
cin >> arr[i];
ll Max = -INF,sum = 0;
for(int i = 0;i < n;i++)
{
if(sum + arr[i] >= 0)//判断前面的子串对后面的数的影响,为正,则是积极的。为负则舍弃。
sum += arr[i];
else
{
sum = 0;//舍弃
sum += arr[i];//为防止整个子串都是负数
}
Max = max(Max,sum);
}
cout << Max << endl;
}
也是dp的一种,通过上面可以推出dp动态转移方程。
dp博主还不会嘻嘻嘻,这里就不写了。