分数取模(费马小定理)

费马小定理:
若p是质数,且p与a互质,有等式:
a^(p-1) %p == 1 % p

那么我们在这上面变一下型:
俩边同除a
a^(p-2)%p == a^(-1)%p
那么我们再在俩边同乘b
(b / a)%p == b*a^(p-2)%p

所以分数b/a 模 p的结果就为b* a^(p-2)%p
这其实也是求出了其乘法逆元
在这里插入图片描述
补充:不知道记录在哪,就写在这叭
由费马小定理还可以推出:
若p是质数,且p与a互质,有等式:
a ^ b % p == a ^ (b%(p-1)) % p

b为任意整数

因为由: a ^ (p-1) % p == 1可以推出p-1是a的一个循环节,每一个循环节都使得模p的情况下等于1,所以有了上述等式

©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页