- 博客(114)
- 收藏
- 关注
原创 Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction
方面情感四元组预测(ASQP)旨在为给定的评论预测所有的四元组(方面术语、方面类别、观点术语、情感极性),这是基于方面的情感分析中最具代表性且最具挑战性的任务。ASQP任务的一个关键挑战是标注数据的稀缺性,这限制了现有方法的性能。为了解决这一问题,我们提出了一个带有伪标签评分器的自训练框架,其中评分器评估评论与其伪标签之间的匹配程度,旨在过滤掉不匹配的部分,从而提高自训练的效果。我们强调了两个关键方面,以确保评分器的有效性和可靠性:训练数据集的质量及其模型架构。为此,我们创建了一个人工标注的对比数据集。
2024-08-17 17:45:28 1143 3
原创 报错: USER_AGENT environment variable not set, consider setting it to identify your requests.
你可以通过设置USER_AGENT环境变量来解决这个问题。以下是如何在不同环境下设置USER_AGENT。
2024-08-16 14:53:24 1138
原创 BvSP_ Broad-view Soft Prompting for Few-Shot Aspect Sentiment Quad Prediction
方面情感四元组预测(ASQP)旨在预测基于方面的四个元素,包括方面词、观点词、方面类别和情感极性。在实际应用中,由于数据分布的差异,未见过的方面会给已训练的神经模型带来许多挑战。受此启发,本研究将 ASQP 任务引入少样本场景,旨在实际应用中实现快速适应。因此,我们首先构建了一个少样本 ASQP 数据集(FSQP),该数据集包含更丰富的类别,并且在少样本研究中更加平衡。此外,近期的方法通过生成范式提取四元组,这涉及将输入句子转换为模板化的目标序列。然而,它们主要集中在单一模板的使用或不同模板顺序的考虑上。
2024-08-15 18:38:09 982
原创 All in One: An Empirical Study of GPT for Few-Shot Aspect-Based Sentiment Anlaysis
基于方面的情感分析(ABSA)是自然语言处理领域中不可或缺且极具挑战性的任务。目前的研究主要集中在特定子任务上,因此难以全面涵盖ABSA领域内的所有子任务。随着生成式预训练变换器(GPTs)的发展,为情感分析提供了一体化解决方案的灵感应运而生。在本研究中,我们使用GPTs来处理少样本ABSA的所有子任务,同时为该应用定义了一般学习范式。我们提出了一种名为All in One(AiO)的模型,这是一种简单而有效的两阶段模型,能够处理所有ABSA子任务。
2024-08-11 14:28:37 1037
原创 **kwargs 字典解包传参的方式
在Python中,****kwargs**是一种通过字典解包 (dictionary unpacking) 的方式进行参数传递的方式。它将一个字典的键值对解包并传递给函数的命名参数。
2024-07-07 13:40:37 464
原创 ModuleNotFoundError: No module named ‘half_json‘
问题: ModuleNotFoundError: No module named ‘half_json’解决方法: pip install jsonfixer。
2024-01-25 12:16:50 553
原创 TypeError: ‘set‘ object is not subscriptable
merged_ranges = sheet_.merged_cell_ranges # 获取当前工作表的所有合并区域列表。
2024-01-11 00:47:34 1092
原创 句子/文本向量化的三种表示方法
这里是利用last_hidden_state的mean进行表示 但这个表示如果利用批量文本向量化的时候可能会出现问题,因为mean的时候会考虑padding, cls_embedding, 和pool_embedding就不会出现这种情况。
2023-11-19 19:07:03 681
原创 On the Strength of Sequence Labeling and Generative Modelsfor Aspect Sentiment Triplet Extraction
生成模型在方面情感三元组抽取任务中取得了很大的成功。然而,现有的方法忽略了方面词和意见词之间的相互信息线索,可能会产生错误的三元组对。此外,生成模型固有的局限性,即逐个标记的解码和简单的结构化提示,使得模型无法处理复杂的结构,特别是多个单词跨度的术语和多个三元组的句子。为了解决这些问题,我们提出了一个序列标记增强生成模型。首先,我们将aspect和opinion之间的依赖关系编码到两个双向模板中,以避免错误配对的三元组。
2023-09-10 00:29:54 507
原创 方面级别情感分析之四元组预测
quad方面级别情感分析四元组任务是由南京理工大学团队2021年8月的论文(ACL 2021)《Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions》首先提出来的,这篇文章他主要的贡献是对方面级情感分析四元组的任务定义, 以及提供了一个公开数据集ACOS,提出了多个基于bert处理四元组任务的baseline。\quad。
2023-08-30 22:32:39 2664
原创 方面级别情感分析介绍
由于细粒度情感分析是由早期的情感分析发展来的, 所有在讲细粒度情感分析之前我们需要要了解一下什么是情感分析。说明: (细粒度情感分析也叫方面级别情感分析, 本文统一称为细粒度情感分析)
2023-08-30 22:31:11 3138
原创 A Fine-Grained Social Bias Measurement Framework for Open-Domain Dialogue Systems (NLPCC 2022)
基于大规模语料库的预训练模型可以有效地提高开放域对话系统在性能方面的性能。然而,最近的研究表明,在预先训练的模型中存在各种道德问题,严重影响了对话系统的应用。在这些伦理问题中,社会偏见特别复杂,因为它对边缘化群体的负面影响往往是隐性的,因此需要规范推理和严格分析。在本文中,我们报告了团队BERT 4 EVER为NLPCC 2022共享任务7 -细粒度对话社会偏见测量提供的解决方案,该任务旨在测量对话场景中的社会偏见。
2023-08-22 18:22:41 241
原创 An Effective Deployment of Contrastive Learning in Multi-label Text Classification (ACL2023)
对比学习技术在自然语言处理任务中的有效性还有待探索和分析。如何正确合理地构建正反样本是对比学习的核心挑战。在多标签文本分类任务中发现对比对象甚至更难。以前的工作中提出很少提出对比损失。在本文中,我们从一个不同的角度研究这个问题,提出了五个新的对比损失的多标签文本分类任务。分别是严格对比损失(SCL)标签内对比损失(ICL)Jaccard相似性对比损失(JSCL)Jaccard相似性概率对比损失(JSPCL)逐步标签对比损失(SLCL)。
2023-08-22 16:48:02 290
原创 A Unified One-Step Solution for Aspect Sentiment Quad Prediction (2023 ACL) 文献阅读
方面情感四元预测(ASQP)是一个具有挑战性的任务。是基于方面级别情感分析的重要子任务,因为它提供了一个完整的方面级的情感结构。我们构建了两个数据集1来扩展现有ASQP数据集的容量。表2:ASQP任务的数据统计。#表示对应元件的数量。s、w、c、q分别代表样本、词、类别和四元组。EA、EO、IA和IO分别表示显性方面、显性意见、隐性方面和隐性意见。“-”表示不包括此项目。
2023-07-27 14:29:38 447
原创 Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis 论文阅读
基于方面的情感分析是一个细粒度的情感分类任务。图1:一个例句及其依赖关系树,来自餐厅评论。这句话包含两个方面,但具有相反的情感极性。图2提供了DualGCN的概述。在ABSA任务中,给出句子-方面对sa(s,a)sa,其中aa1a2amaa1a2...am是一个方面集合。它也是整个句子sw1w2wnsw1w2wn一个子序列。然后,我们使用BiLSTMBiLSTMBiLSTM或BERTBERT。
2023-07-26 21:24:12 1937
原创 Boundary-Driven Table-Filling for Aspect Sentiment Triplet Extraction 阅读笔记
方面情感三元组提取(ASTE)是情感分析中的一项重要任务,旨在从文本评论中提取方面术语, 意见术语,以及(方面,意见)术语所对应的情感极性。给定长度为n的句子Xx1x2xnXx1x2...xn,ASTE任务的目标是提取一组方面情感三元组。三元组被定义为(方面,观点,情感),其中情感s∈POSNEUNEGs∈POSNEUNEG。我们将三元组表示为2D表中的关系区域。它的边界用于指示方面术语和意见术语的位置,并且它的类型用于表示情感。
2023-07-24 21:06:39 682
原创 Enhanced Multi-Channel Graph Convolutional Network for Aspect Sentiment Triplet Extraction论文阅读
Aspect Sentiment Triplet Extraction(ASTE)是一种新兴的情感分析任务。目的是从给定的句子中提取目标术语和意见术语,并确定目标意见对的情感极性。图1:给出了一个带有依赖树的句子来说明ASTE任务。在三元组集合中,方面术语、观点术语分别以蓝色和黄色突出显示。积极的情绪极性以红色突出显示,而消极的情绪极性以绿色突出显示。给定具有nnn个单词的输入句子Xw1w2⋅⋅⋅wnXw1w2⋅⋅⋅wn,模型的目标是输出一组三元组Taos。
2023-07-23 18:24:20 491 4
原创 AssertionError: Please update the *.json and *.py files of ChatGLM2-6B from HuggingFace.
重新到huggginface中下载文件进行更新替换即可 最好.py .json的文件全部替换。这个因为配置文件没有更新。
2023-07-05 17:17:02 216
转载 ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21‘ not found 解决方法
由于需要迁移环境在新的服务器上部署,运行模型产生了这个报错。感觉是升级了gcc所导致的。
2023-07-04 10:43:51 562
原创 MVP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction
论文地址: https://arxiv.org/pdf/2305.12627.pdf论文代码: https://github.com/ZubinGou/multi-view-promptingMulti-view Prompting (MVP)本文提出了多试图提示(MVP)模型处理方面级别情感分析,以聚合不同顺序产生的情感元素,利用不同视角的人类问题解决过程的直觉。具体来说,(MVP)引入元素顺序提示,引导语言模型生成多个情感元组,每个元组的元素顺序不同,然后投票选出最合理的元组。(MVP)可以自然地将多
2023-06-26 15:39:07 852
原创 ModuleNotFoundError: No module named ‘allennlp‘解决方法
ModuleNotFoundError: No module named 'allennlp'解决方法allennlp安装
2023-05-04 15:23:26 1915 1
原创 tokenizer.tokenize(), tokenizer.encode() , tokenizer.encode_plus() 方法介绍及其区别
tokenizer.tokenize(), tokenizer.encode() , tokenizer.encode_plus() 方法介绍及其区别
2022-11-08 12:55:38 8839 1
原创 A Robustly Optimized BMRC for Aspect Sentiment Triplet Extraction 论文阅读
A Robustly Optimized BMRC for Aspect Sentiment Triplet Extraction用于方面情感三重提取的稳健优化BMRC
2022-11-01 17:24:19 603 1
原创 Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet Extraction 论文阅读
Bidirectional Machine Reading Comprehension forAspect Sentiment Triplet Extraction 方面情感三元组提取的双向机器阅读理解
2022-11-01 16:35:59 377 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人