1.Link:
http://poj.org/problem?id=3239
2.Content:
Solution to the n Queens Puzzle
Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 3459 Accepted: 1273 Special Judge Description
The eight queens puzzle is the problem of putting eight chess queens on an 8 × 8 chessboard such that none of them is able to capture any other. The puzzle has been generalized to arbitrary n × n boards. Given n, you are to find a solution to the n queens puzzle.
Input
The input contains multiple test cases. Each test case consists of a single integer n between 8 and 300 (inclusive). A zero indicates the end of input.
Output
For each test case, output your solution on one line. The solution is a permutation of {1, 2, …, n}. The number in the ith place means the ith-column queen in placed in the row with that number.
Sample Input
8 0Sample Output
5 3 1 6 8 2 4 7Source
POJ Monthly--2007.06.03, Yao, Jinyu
3.Method:
一开始用8皇后的方法,发现算不出来。
只能通过搜索,可以利用构造法,自己也想不出来构造,所以直接套用了别人的构造公式
感觉没啥意义,直接就用别人的代码提交了,也算是完成一道题目了
构造方法:
http://www.cnblogs.com/rainydays/archive/2011/07/12/2104336.html
一、当n mod 6 != 2 且 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1 (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;...省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1 (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1 (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n (k为奇数,n为奇数)第二种情况可以认为是,当n为奇数时用最后一个棋子占据最后一行的最后一个位置,然后用n-1个棋子去填充n-1的棋盘,这样就转化为了相同类型且n为偶数的问题。
若k为奇数,则数列的前半部分均为奇数,否则前半部分均为偶数。
4.Code:
http://blog.csdn.net/lyy289065406/article/details/6642789?reload
1 /*代码一:构造法*/ 2 3 //Memory Time 4 //188K 16MS 5 6 #include<iostream> 7 #include<cmath> 8 using namespace std; 9 10 int main(int i) 11 { 12 int n; //皇后数 13 while(cin>>n) 14 { 15 if(!n) 16 break; 17 18 if(n%6!=2 && n%6!=3) 19 { 20 if(n%2==0) //n为偶数 21 { 22 for(i=2;i<=n;i+=2) 23 cout<<i<<' '; 24 for(i=1;i<=n-1;i+=2) 25 cout<<i<<' '; 26 cout<<endl; 27 } 28 else //n为奇数 29 { 30 for(i=2;i<=n-1;i+=2) 31 cout<<i<<' '; 32 for(i=1;i<=n;i+=2) 33 cout<<i<<' '; 34 cout<<endl; 35 } 36 } 37 else if(n%6==2 || n%6==3) 38 { 39 if(n%2==0) //n为偶数 40 { 41 int k=n/2; 42 if(k%2==0) //k为偶数 43 { 44 for(i=k;i<=n;i+=2) 45 cout<<i<<' '; 46 for(i=2;i<=k-2;i+=2) 47 cout<<i<<' '; 48 for(i=k+3;i<=n-1;i+=2) 49 cout<<i<<' '; 50 for(i=1;i<=k+1;i+=2) 51 cout<<i<<' '; 52 cout<<endl; 53 } 54 else //k为奇数 55 { 56 for(i=k;i<=n-1;i+=2) 57 cout<<i<<' '; 58 for(i=1;i<=k-2;i+=2) 59 cout<<i<<' '; 60 for(i=k+3;i<=n;i+=2) 61 cout<<i<<' '; 62 for(i=2;i<=k+1;i+=2) 63 cout<<i<<' '; 64 cout<<endl; 65 } 66 } 67 else //n为奇数 68 { 69 int k=(n-1)/2; 70 if(k%2==0) //k为偶数 71 { 72 for(i=k;i<=n-1;i+=2) 73 cout<<i<<' '; 74 for(i=2;i<=k-2;i+=2) 75 cout<<i<<' '; 76 for(i=k+3;i<=n-2;i+=2) 77 cout<<i<<' '; 78 for(i=1;i<=k+1;i+=2) 79 cout<<i<<' '; 80 cout<<n<<endl; 81 } 82 else //k为奇数 83 { 84 for(i=k;i<=n-2;i+=2) 85 cout<<i<<' '; 86 for(i=1;i<=k-2;i+=2) 87 cout<<i<<' '; 88 for(i=k+3;i<=n-1;i+=2) 89 cout<<i<<' '; 90 for(i=2;i<=k+1;i+=2) 91 cout<<i<<' '; 92 cout<<n<<endl; 93 } 94 } 95 } 96 } 97 return 0; 98 }