UVa 756 - Biorhythms

本文通过数论和中国剩余定理解决了一个关于三种不同生物周期(23天、28天、33天)的问题,旨在找到这三种周期下一次同时达到峰值的具体日期。使用扩展的欧几里得算法来寻找逆元。

题目

生物周期,三种属性的生物周期为23,28,和33天。已知每个周期出现的某个日期,现在是第d天,问第多少天三种周期同时到达。

分析

数论,中国剩余定理。用扩展的欧几里得求逆元。

说明

经典例题。。。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void exgcd(int a, int b, int &r, int &x, int &y) 
{
    if (!b) {
        r = a;
        x = 1;
        y = 0;
    }else {
        exgcd(b, a%b, r, y, x);
        y -= a / b * x;
    }
}

int main()
{
	int d, Mi, ti, y, k, cases = 1;
	int r[3], m[3] = {23, 28, 33};
	while (~scanf("%d%d%d%d", &r[0], &r[1], &r[2], &d) && d != -1) {
		int M = m[0] * m[1] * m[2], flag = 1, ans = 0;
		for (int i = 0; i < 3; ++ i) {
			Mi = M/m[i];
			exgcd(Mi, m[i], k, ti, y);
			if (ti < m[i])
				ti += m[i];
			ans = (ans + Mi * ti * r[i]) % M;
		}
		while (ans <= d) {
			ans += M;
		}
		ans -= d;
		printf("Case %d: the next triple peak occurs in %d days.\n", cases ++, ans);
	} 
    return 0;
}
内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究与工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷与可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析与优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF与新方法在不同几何参数下的误差表现,强化理论与实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路与技术实现路径。
内容概要:本文围绕“并_离网风光互补制氢合成氨系统”的容量配置与调度优化问题展开研究,基于Cplex求解器,利用Matlab代码实现对系统多变量、多约束条件下的优化建模与仿真分析。重点探讨风能、光伏、电解水制氢、氢气储存及合成氨工艺之间的能量耦合关系,构建综合能源系统的数学模型,实现对设备容量的最优配置与运行调度的精细化管理。文中提供了完整的Matlab代码实现流程,支持论文结果的复现,并结合实际数据验证模型的有效性与实用性。; 适合人群:具备一定电力系统、能源系统或运筹优化背景的研究生、科研【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析【Cplex求解】(Matlab代码实现)人员及工程技术人员,熟悉Matlab编程与数学建模者更佳;适用于从事新能源综合利用、氢能系统设计等相关领域的研究人员。; 使用场景及目标:①用于复现高水平期刊中关于风光制氢合成氨系统的优化研究成果;②支撑科研工作中对综合能源系统建模与优化求解的学习与开发;③为实际项目中的氢能系统规划提供理论依据和技术工具支持。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与数据,按照文档目录顺序逐步复现模型构建、求解与仿真过程,重点关注目标函数设计、约束条件设定及Cplex调用方法,同时可扩展至Python版本对比学习,深化对优化算法与能源系统耦合机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值