-
顺序表应用4:元素位置互换之逆置算法
Time Limit: 10MS Memory limit: 570K
题目描述
一个长度为len(1<=len<=1000000)的顺序表, 数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),设计一个时间复杂度为O(N)、空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能用一个循环语句实现,不能分成两个部分。输入
第一行输入整数n,代表下面有n行输入;
之后输入n行,每行先输入整数len与整数m(分别代表本表的元素总数与前半表的元素个数),之后输入len个整数,代表对应顺序表的每个元素。输出
输出有n行,为每个顺序表前m个元素与后(len-m)个元素交换后的结果示例输入
2 10 3 1 2 3 4 5 6 7 8 9 10 5 3 10 30 20 50 80
示例输出
4 5 6 7 8 9 10 1 2 3 50 80 10 30 20
提示
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能用一个循环语句实现,不能分成两个部分。
来源
- #include<stdio.h>
- #include<stdlib.h>
- #define maxsize 1000000
- typedef int element;
- typedef struct
- {
- element *elem;
- int length;
- int listsize;
- }Sq;
- int initlist (Sq *L)
- {
- L->elem=(element *)malloc(maxsize * sizeof(element));
- L->length=0;
- L->listsize=maxsize;
- return 0;
- }
- void create (Sq *L,int k)
- {
- int i;
- for(i=0;i<k;i++)
- {
- scanf("%d",&L->elem[i]);
- }
- L->length=k;
- }
- void del(Sq *L,int k)
- {
- int i,j,t;
- for(j=L->length-1,i=0;i<=j;i++,j--)
- {
- t=L->elem[i];
- L->elem[i]=L->elem[j];
- L->elem[j]=t;
- }
- for(j=L->length-1-k,i=0;i<=j;i++,j--)
- {
- t=L->elem[i];
- L->elem[i]=L->elem[j];
- L->elem[j]=t;
- }
- for(j=L->length-1,i=L->length-k;i<=j;i++,j--)
- {
- t=L->elem[i];
- L->elem[i]=L->elem[j];
- L->elem[j]=t;
- }
- }
- void display(Sq *L)
- {
- int i;
- for(i=0;i<L->length-1;i++)
- {
- printf("%d ",L->elem[i]);
- }
- printf("%d\n",L->elem[L->length-1]);
- }
- int main()
- {
- Sq L;
- int i,n,m,j,k;
- scanf("%d",&n);
- for(i=0;i<n;i++)
- {
- scanf("%d%d",&m,&k);
- initlist (&L);
- create( &L,m);
- del (&L,k);
- display(&L);
- }
- }
顺序表应用4:元素位置互换之逆置算法
最新推荐文章于 2024-04-05 20:27:46 发布