【卢卡斯(Lucas)定理】
Lucas定理用来求C(a,b)mod p的值,其中p为素数。
数学表达式为:
Lucas(a,b,q)=C(a%q,b%q)*Lucas(a/p,b/p,p);
Lucas(a,0,q)=0;
通过这个定理就可以很方便的把大数的组合转化成小数。但其中还是要求C(a%q,b%q)%p,所以这里引入逆元来求。
【定义】若整数a,b,p, 满足a·b≡1(mod p).则称a 为b 模p 的乘法逆元, 即a=b- 1mod p.其中, p 是模数。
应用到组合数中来就是:
a!/[b!*(a-b)!] % p == a! * [b!*(a-b)!]-1 %p
【逆元求法】:
应用费马小定理,ap-1=1 mod p ,即 a*ap-2=1 mod p
也就是说 ap-2就是a的逆元。
当然这里求出来的逆元是在取模p的逆元,对我们最终目标没有影响。这也是比较方便而且比较好的方法。
弄个模板来。
C(n,m)=C(n-1,m-1)+C(n-1,m)
快速计算组合数对MOD取余:
C(n, m)%MOD = (m!%MOD)*(n!%MOD*(m-n)!%MOD)^(MOD-2)%MOD。需要用到快速幂取模。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 100010
typedef long long LL;
LL m,n,p;
LL Pow(LL a,LL b,LL mod)
{
LL ans=1;
while(b)
{
if(b&1) ans=(ans*a)%mod;
b/=2;
a=(a*a)%mod;
}
return ans;
}
LL C(LL n,LL m)
{
if(n<m)
return 0;
LL ans=1;
for(int i=1;i<=m;i++)
{
ans=ans*(((n-m+i)%p)*Pow(i,p-2,p)%p)%p;
}
return ans;
}
LL Lucas(LL n,LL m)
{
if(m==0)
return 1;
return (Lucas(n/p,m/p)*C(n%p,m%p))%p;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld",&n,&m,&p);
printf("%lld\n",Lucas(n,m));
}
return 0;
}