Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak) and delete it, at that all elements equal to ak + 1 and ak - 1 also must be deleted from the sequence. That step brings ak points to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
2 1 2
2
3 1 2 3
4
9 1 2 1 3 2 2 2 2 3
10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to 2. In total we earn 10 points.
题意:有n个数,没去一个数k,得到k值,但是得去掉序列中所有k-1,k+1和k(只有这个k)的值。问最大能得到多大的值。具体列子看样例解释应该就知道了。DP吧。简单的。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <queue>
#include <map>
#include <stack>
#include <list>
#include <vector>
using namespace std;
#define LL __int64
LL dp[100010],f[100010],a[100010];
int main()
{
int n,i;
scanf("%d",&n);
memset(f,0,sizeof(f));
int max=0;
for (i=1;i<=n;i++)
{
scanf("%d",&a[i]);
f[a[i]]++;
if (max<a[i]) max=a[i];
}
for (i=1;i<=max;i++)
{
if (f[i])
{
if (dp[i-2]+f[i]*i>dp[i-1])
dp[i]=dp[i-2]+f[i]*i;
else
dp[i]=dp[i-1];
}
else dp[i]=dp[i-1];
}
cout<<dp[max]<<endl;
return 0;
}