相关系数

1.皮尔逊相关系数

1.1原理

在这里插入图片描述

1.2使用条件

必须当数据之间是线性关系、数据符合正态分布
在这里插入图片描述

1.3经典误区

实际上,有很多情况下不能直接对数据进行相关系数分析,而是应该先画散点图观察。
1.当数据不是线性关系时,计算皮尔逊相关系数毫无意义。
2.对于某些数据中的某些离群点,其可能对相关系数产生极大影响,甚至是从0到0.8的影响。
在这里插入图片描述

1.4相关系数的显著性检验:

为什么要显著性检验?

在这里插入图片描述

怎样进行显著性检验?

详情见ppt。

什么时候才可以进行显著性假设检验?

条件:
在这里插入图片描述

a.正态分布检验:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.斯皮尔曼相关系数

2.1原理

在这里插入图片描述

2.1计算过程

在这里插入图片描述

2.3相关系数的显著性检验

在这里插入图片描述

综述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值