假设要实现一个存放多种类型数据结构的对象,比如一个存放算术操作数和操作符的树结点,需要存放包含一元操作符、二元操作符和数字类型的结点
class Node:
pass
class UnaryOperator(Node):
def __init__(self, operand):
self.operand = operand
class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right
class Add(BinaryOperator):
pass
class Sub(BinaryOperator):
pass
class Mul(BinaryOperator):
pass
class Div(BinaryOperator):
pass
class Negative(UnaryOperator):
pass
class Number(Node):
def __init__(self, value):
self.value = value
执行运算需要这样调用
# 假设运算式子:2 - (2+2) * 2 / 1 = 2-(8) = -6.0
t1 = Add(Number(2), Number(2))
t2 = Mul(t1, Number(2))
t3 = Div(t2, Number(1))
t4 = Sub(Number(2), t3)
或者这样调用
t5 = Sub(Number(2), Div(Mul(Add(Number(2), Number(2)), Number(2)), Number(1)))
这样子需要执行多次类的调用,极不易读写且冗长,有没有一种方法让调用更加通用,访问变得简单呢。这里使用访问者模式可以达到这样的目的。
访问者模式能够在不改变元素所属对象结构的情况下操作元素,让调用或调用者(caller)的方式变得简单,这种操作常见于的士公司操作,当一个乘客叫了一辆的士时,的士公司接收到了一个访问者,并分配一辆的士去接这个乘客。
首先定义一个访问者结点类VisitorNode
,实现最基本的访问入口,任何访问的方式都需要继承这个访问者结点类,并通过这个访问者结点类的visit()
方法来访问它的各种操作
# 访问者节点的基类
class NodeVisitor:
def visit(self, node):
if not isinstance(node, Node): # 不是Node对象时当做一个值返回,如果有其他情况可以根据实际来处理
return node
self.meth = "visit_" + type(node).__name__.lower() # type(node)也可以换成node.__class__(只要node.__class__不被篡改)
meth = getattr(self, self.meth, None)
if meth is None:
meth = self.generic_visit
return meth(node)
def generic_visit(self, node):
raise RuntimeError(f"No {self.meth} method")
# (一种)访问者对应的类
class Visitor(NodeVisitor):
"""
方法的名称定义都要与前面定义过的结点类(Node)的名称保证一致性
"""
def visit_add(self, node):
return self.visit(node.left) + self.visit(node.right)
def visit_sub(self, node):
return self.visit(node.left) - self.visit(node.right)
def visit_mul(self, node):
return self.visit(node.left) * self.visit(node.right)
def visit_div(self, node):
return self.visit(node.left) / self.visit(node.right)
def visit_negative(self, node): # 如果class Negative 命名-> class Neg,那么 def visit_negative 命名-> def visit_neg
return -self.visit(node.operand)
def visit_number(self, node):
return node.value
这里的meth = getattr(self, self.meth, None)
使用了字符串调用对象方法,self.meth
动态地根据各类Node类(Add, Sub, Mul…)的名称定义了对应于类Visitor
中的方法(visit_add, visit_sub, visit_mul…)简化了访问入口的代码,当没有获取到对应的方法时会执行generic_visit()
并抛出RuntimeError
的异常提示访问过程中的异常
如果需要添加一种操作,比如取绝对值,只需要定义一个类class Abs(Unaryoperator): pass
并在类Visitor
中定义一个visit_abs(self, node)
方法即可,不需要做出任何多余的修改,更不需要改变存储的结构
这里visit()
方法调用了visit_xxx()
方法,而visit_xxx()
可能也调用了visit()
,本质上是visit()
的循环递归调用,当数据量变大时,效率会变得很慢,且递归层次过深时会导致超过限制而失败,而下面介绍的就是利用栈和生成器来消除递归提升效率的实现访问者模式的方法
import types
class Node:
pass
class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right
class UnaryOperator(Node):
def __init__(self, operand):
self.operand = operand
class Add(BinaryOperator):
pass
class Sub(BinaryOperator):
pass
class Mul(BinaryOperator):
pass
class Div(BinaryOperator):
pass
class Negative(UnaryOperator):
pass
class Number(Node):
def __init__(self, value): # 与UnaryOperator区别仅命名不同
self.value = value
class NodeVisitor:
def visit(self, node):
# 使用栈+生成器来替换原来visit()的递归写法
stack = [node]
last_result = None # 执行一个操作最终都会返回一个值
while stack:
last = stack[-1]
try:
if isinstance(last, Node):
stack.append(self._visit(stack.pop()))
elif isinstance(last, types.GeneratorType): # GeneratorType会是上一个if返回的对象,这个对象会返回两个node执行算术之后的结果
# 如果是生成器,不pop掉,而是不断send,直到StopIteration
# 如果last_result不是None,这个值会给回到生成器(例如2被visit_add()的左值接收到)
stack.append(last.send(last_result))
last_result = None
else: # 计算结果是一个值
last_result = stack.pop()
except StopIteration: # 生成器yield结束
stack.pop()
return last_result
def _visit(self, node):
self.method_name = "visit_" + type(node).__name__.lower()
method = getattr(self, self.method_name, None)
if method is None:
self.generic_visit(node)
return method(node)
def generic_visit(self, node):
raise RuntimeError(f"No {self.method_name} method")
class Visitor(NodeVisitor):
def visit_add(self, node):
yield (yield node.left) + (yield node.right) # node.left和node.right都可能是Node
def visit_sub(self, node):
yield (yield node.left) - (yield node.right)
def visit_mul(self, node):
yield (yield node.left) * (yield node.right)
def visit_div(self, node):
yield (yield node.left) / (yield node.right)
def visit_negative(self, node):
yield -(yield node.operand)
def visit_number(self, node):
return node.value
测试是否还会引起超过递归层数的异常
def test_time_cost():
import time
s = time.perf_counter()
a = Number(0)
for n in range(1, 100000):
a = Add(a, Number(n))
v = Visitor()
print(v.visit(a))
print(f"time cost:{time.perf_counter() - s}")
输出正常,没有问题
4999950000
time cost:0.9547078
最后琢磨出了一个似乎可以作为替代的方法
class Node:
pass
class UnaryOperator(Node):
def __init__(self, operand):
self.operand = operand
class BinaryOperator(Node):
def __init__(self, left, right):
self.left = left
self.right = right
class Add(BinaryOperator):
def __init__(self, left, right):
super().__init__(left, right)
self.value = self.left.value + self.right.value
class Sub(BinaryOperator):
def __init__(self, left, right):
super().__init__(left, right)
self.value = self.left.value - self.right.value
class Mul(BinaryOperator):
def __init__(self, left, right):
super().__init__(left, right)
self.value = self.left.value * self.right.value
class Div(BinaryOperator):
def __init__(self, left, right):
super().__init__(left, right)
self.value = self.left.value / self.right.value
class Negative(UnaryOperator):
def __init__(self, operand):
super().__init__(operand)
self.value = -self.operand.value
class Number(Node):
def __init__(self, value):
self.value = value
运行测试
def test_time_cost():
import time
s = time.perf_counter()
a = Number(0)
for n in range(1, 100000):
a = Add(a, Number(n))
print(a.value)
print(time.perf_counter() - s)
输出
4999950000
0.2506986
比前面的访问者模式还快而且不用递归,- -!