机器学习:逻辑回归算法实现鸢尾花预测和银行数据处理

1、鸢尾花预测

        1、特征选择

        

        2、对特征处理

train=pd.read_excel("鸢尾花训练数据.xlsx")
test=pd.read_excel("鸢尾花测试数据.xlsx")
x_train=train[["萼片长(cm)","萼片宽(cm)","花瓣长(cm)","花瓣宽(cm)"]]
y_train=train[["类型_num"]].values.ravel()

        3、选择逻辑回归作为分类模型。

from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()

        4、模型训练

lr.fit(x_train,y_train)
train_predicted=lr.predict(x_train)

        5、评估模型的性能。常用的评估指标包括准确率、召回率、精确度、F1分数

from sklearn import metrics
print(metrics.classification_report(y_train,train_predicted))

  完整代码

import pandas as pd
from sklearn.linear_model import LogisticRegression
train=pd.read_excel("鸢尾花训练数据.xlsx")
test=pd.read_excel("鸢尾花测试数据.xlsx")
x_train=train[["萼片长(cm)","萼片宽(cm)","花瓣长(cm)","花瓣宽(cm)"]]
y_train=train[["类型_num"]].values.ravel()

lr=LogisticRegression()
lr.fit(x_train,y_train)
train_predicted=lr.predict(x_train)
from sklearn import metrics
print(metrics.classification_report(y_train,train_predicted
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值