1、鸢尾花预测
1、特征选择
2、对特征处理
train=pd.read_excel("鸢尾花训练数据.xlsx")
test=pd.read_excel("鸢尾花测试数据.xlsx")
x_train=train[["萼片长(cm)","萼片宽(cm)","花瓣长(cm)","花瓣宽(cm)"]]
y_train=train[["类型_num"]].values.ravel()
3、选择逻辑回归作为分类模型。
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
4、模型训练
lr.fit(x_train,y_train)
train_predicted=lr.predict(x_train)
5、评估模型的性能。常用的评估指标包括准确率、召回率、精确度、F1分数
from sklearn import metrics
print(metrics.classification_report(y_train,train_predicted))
完整代码
import pandas as pd
from sklearn.linear_model import LogisticRegression
train=pd.read_excel("鸢尾花训练数据.xlsx")
test=pd.read_excel("鸢尾花测试数据.xlsx")
x_train=train[["萼片长(cm)","萼片宽(cm)","花瓣长(cm)","花瓣宽(cm)"]]
y_train=train[["类型_num"]].values.ravel()
lr=LogisticRegression()
lr.fit(x_train,y_train)
train_predicted=lr.predict(x_train)
from sklearn import metrics
print(metrics.classification_report(y_train,train_predicted