Learning Enriched Features for Real Image Restoration and Enhancement
Abstract
先讲述高质量图像获取的广泛应用和重要性。CNN的方法主要在全分辨率或者低分辨率表达上应用,前者在空域上效果优良但缺少连贯性的鲁棒结果,后者语义可靠但空域上缺乏精确结果。本文提出的网络实现了空域高分辨率表达和从低分辨率表达中接受强情境信息。核心有四点:并行多分辨率卷积流来提取多尺度特征;通过多分辨率流来进行信息交换;空域和时域注意力模型来提取情境信息;基于多尺度特征融合的注意力机制。
Contribution
- 在保留原始分辨率的细节下,能够获取多尺度空域下完备集的特征提取方法;
- 通过不断交换(多尺度)信息,可以从多分辨率分支中融合信息来提升表达学习能力;
- 用一个核选取网络来融合多尺度特征,动态结合变化的感受野和保留不同空域分辨率下的原始特征信息;
- 递归残差设计,分解输入信号来简化学习过程,并通过非常深的网络重建;
- 在去噪、超分、图像增强领域的数据集达到SOTA水准;
上面是论文中的描述,用口水话描述下这篇论文的主要创新点,一个是多尺度信息的重复利用,可以得到更多地冗余信息从而帮助恢复了图像细节;一个是采用了attention机制来对通道和空域进行了操作,即利用了图像的语义信息,从而得到了更好的选核和融合的过程。这篇文章的网络是挺复杂的,本人是做去噪的,目前主要的真实去噪数据集的榜上这个方法效果都非常好。
Method(MIRNet)
主要的网络结构如下:
RRG是递归残差块,主体结构。loss采用了一个叫Charbonnier loss的玩意:
L ( I ^ , I ∗ ) = ∥ I ^ − I ∗