算法 - 斐波那契数列

本文介绍了斐波那契数列的三种算法:指数算法、多项式算法和矩阵算法。指数算法通过递归实现,但效率低下;多项式算法利用循环保存中间结果,提高效率;矩阵算法结合矩阵快速幂,将操作次数优化到O(log n),为最高效的解决方案。文章提供了Java实现的代码示例。
摘要由CSDN通过智能技术生成

原文地址:http://duras.wang/blog/2016/03/18/algorithms01/ 

  斐波那契数列中每个数都是其两个直接前项的和,其生成规则如下所示:

Fn=Fn1+Fn210n>1n=1n=0
.

指数算法

  要求斐波那契数列的第n项值一种简单的方法就是使用递归

function fib(n)
if n=0: return 0;
if n=1: return 1;
return fib(n-1)+fib(n-2);

  但是使用递归来计算第n项,它消耗的资源是指数级增长的。如下图所示,一个fib(n)会触发一连串的递归操作,而这些操作中有很多步骤是重复的。因此,这个算法虽然正确,但是效率太低。
指数算法

多项式算法

  递归的方法对资源的消耗太大,更合理的方法是使用循环来完成,随时保存中间结果。

function fib(n)
if n=0: return 0;
create an array f[0…n]
f[0]=0,f[1]=1
for i=2…n:
 f[i]=f[i-1]+f[i-2]
return f[n]

矩阵算法

  首先,对于数列的初始条件对应以下的矩阵运算

### 回答1: 这是一个经典的算法题,通常被称为斐波那契数列。在C/C++中,可以使用循环或递归来实现该算法。循环实现通常比递归更高效,因为递归会产生额外的调用开销。以下是使用循环实现斐波那契数列的C语言代码示例: ```c #include <stdio.h> int main() { int n, a = 0, b = 1, c, i; printf("Enter the number of terms: "); scanf("%d", &n); printf("Fibonacci Series: "); for (i = 1; i <= n; i++) { printf("%d, ", a); c = a + b; a = b; b = c; } return 0; } ``` 其中,变量a和b分别存储斐波那契数列中的前两个数,c则为当前数的值,i用于表示当前循环到第几个数,n为用户输入的数列长度。程序中,首先让用户输入数列长度n,然后使用for循环依次输出数列中的每一个数,每次迭代更新a、b和c的值,直到输出完所有数为止。 ### 回答2: 斐波那契数列是指前两个数为1,从第三个数开始每个数都是前两个数之和的数列。例如:1、1、2、3、5、8、13、21、34…… 这个数列在数学上有很多应用,非常重要。 在C/C++语言中,计算斐波那契数列可以使用迭代或递归的方式进行。其中,递归方式的代码比较简单,但是会导致大量的重复计算,会造成程序效率的降低。 以下是递归方法的示例代码: ```c int fib(int n) { if(n<2) return n; else return fib(n-1)+fib(n-2); } ``` 这段代码中,如果输入n小于2,则直接返回n;否则,使用递归的方式计算fib(n-1)和fib(n-2)两个值的和,并将结果返回。虽然代码简单易懂,但是会造成效率较低的问题。 而迭代的方式则可以避免上述问题,在每次计算时只需要计算前两个数的和即可,如下面这个示例代码: ```c int fib(int n) { int a = 1, b = 1; for(int i=3; i<=n; i++) { int c = a + b; a = b; b = c; } return b; } ``` 这段代码中,先定义了a和b两个变量,并将它们初始化为1,作为斐波那契数列的前两项,然后通过for循环计算第n个斐波那契数,并返回结果b。 总之,在C/C++中,计算斐波那契数列可以使用递归或迭代的方法,但是要根据实际情况选择合适的方法,以提高效率和减少计算量。 ### 回答3: 斐波那契数列是一个经典的数学问题,在计算机编程中也经常用到。斐波那契数列是这样一个数列:0、1、1、2、3、5、8、13、21、34、……它的特点是每个数都是前两个数之和。例如,第三个数是0+1=1,第四个数是1+1=2,以此类推。 计算斐波那契数列可以用递归或循环的方式实现。递归的实现方式相对简单,就是利用函数调用自身的特性计算结果。但是如果使用递归的方式计算斐波那契数列,会造成时间复杂度的增长,导致程序效率低下,容易出现内存泄漏等问题。 因此,一般使用循环的方式来实现斐波那契数列的计算。通过给定第一个数和第二个数,然后依次计算出后续的数。例如,假设第一个数为0,第二个数为1,则可以通过以下代码计算前十个斐波那契数列: int n = 10; //要计算的斐波那契数列个数 int a = 0; //第一个数 int b = 1; //第二个数 int c; //存储计算出的数 for(int i = 1; i <= n; i++) { if(i == 1) { printf("%d ", a); } else if(i == 2) { printf("%d ", b); } else { c = a + b; printf("%d ", c); a = b; b = c; } } 上述程序中,先给定要计算的斐波那契数列的个数,然后初始化第一个数和第二个数。接着,通过循环计算出后续的数,将计算出的数存储在变量c中,然后更新a和b的值,继续进行下一次计算。最后,将计算出的数输出到屏幕上。 通过这种循环的方式来实现斐波那契数列的计算,可以避免使用递归导致的时间和空间复杂度过高的问题,提高程序的效率和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值