spark分布式集群环境搭建(hadoop之上)

本文介绍的spark环境搭建是基于hadoop之上的,hadoop集群环境搭建在之前的文章中已经介绍过,请前往查看。

scala安装

scala下载

wget https://downloads.lightbend.com/scala/2.12.4/scala-2.12.4.tgz

具体的版本可去官网http://www.scala-lang.org/download/根据实际情况选

安装和配置scala

tar -xvf scala-2.12.4.tgz  -C /usr/local

将解压后的路径添加到path中

vim /etc/profile

添加如下两行内容:

export SCALA_HOME=/usr/local/scala-2.12.4
export PATH=$PATH:$SCALA_HOME/bin

使之生效

source /etc/profile

测试是否安装成功

scale

在命令提示符中输入scale,如果看到scale提示符说明已经安装成功
这里写图片描述

可使用“:quit”退出,其他支持的命令可使用“:help”查看

spark安装

下载spark

 wget http://mirrors.shuosc.org/apache/spark/spark-2.2.1/spark-2.2.1-bin-hadoop2.7.tgz

安装

tar -xvf spark-2.2.1-bin-hadoop2.7.tgz -C /usr/local
mv /usr/local/spark-2.2.1-bin-hadoop2.7/ /usr/local/spark

设置环境变量

vim /etc/profile

加入如下两行内容:

export SPARK_HOME=/usr/local/spark
export PATH=$PATH:$SPARK_HOME/bin

使之生效

source /etc/profile

测试,在命令行中输入“spark-shell”

spark-shell

这里写图片描述

至此,spark已安装完成

配置spark

cd /usr/local/spark
cp conf/slaves.template conf/slaves
cp conf/spark-env.sh.template conf/spark-env.sh

修改slaves文件的内容

vim conf/slaves

删除localhost,添加slave

修改spark-env.sh的内容

vim conf/spark-env.sh

添加如下内容:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 #写你自己的java路径
export SCALA_HOME=/usr/local/scala-2.12.4 
export SPARK_MASTER_HOST=192.168.78.139 #写你自己的ip
export SAPRk_WORKER_MEMORY=1g #每个worker进程能管理1g内存

拷贝到slave节点

在master上执行

scp -r /usr/local/scala-2.12.4/ root@slave:/usr/local/
scp -r /usr/local/spark/ root@slave:/usr/local/
scp /etc/profile root@slave:/etc/profile

在salve节点执行

source /etc/profile

启动spark分布式集群并测试

启动spark

 ./sbin/start-all.sh  #当前路径为/usr/local/spark

验证

jps

输出如下信息
master节点
这里写图片描述
slave节点
这里写图片描述

测试WEBUI页面能否访问(需提前关闭防火墙)
这里写图片描述

测试

创建本地文件

vim 1.txt

内容如下:

hello spark
hello word
hello spark

上传到hadoop集群

hdfs dfs -put 1.txt /tmp

测试spark-shell

spark-shell

启动成功后输入如下内容:

val readmeFile = sc.textFile("hdfs://master:9000/tmp/1.txt")
readmeFile.count

var theCount = readmeFile.filter(line=>line.contains("spark"))
theCount.count

var wordCount = readmeFile.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_)
 wordCount.collect

执行效果:
这里写图片描述

到此,spark集群搭建完毕

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论

打赏作者

moledyzhang

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值