- 博客(292)
- 收藏
- 关注
原创 TableFormer: Table Structure Understanding with Transformers(cvpr 2022)
这篇论文来自IBM,与平安的TableMaster模型有着相似的idea。文中提出重要的2种改进用于端到端的识别。首先,引入了一种新的table-cell对象检测解码器。这样,就可以直接从程序化的PDF源中获取表格单元格的内容,避免了自定义OCR解码器的训练。这种架构上的改变可以更准确的提取表格内容,并可以处理非英语表;其次,用基于transformer的解码器替换LSTM解码器。这提高了树编辑距离分数(TEDS),在简单表上从91%提高到98.5%,在复杂表上从88.7%提高到95%。
2024-11-22 19:27:46
756
原创 PINGAN-VCGROUP’S SOLUTION FOR ICDAR 2021 COMPETITION ON SCIENTIFIC LITERATURE PARSING TASK B:TABLE R
作者提出将表格识别任务分为4个子任务:表格结构识别,文本行检测,文本行识别以及边框对齐。表格结构识别是基于MASTER模型,文本行检测采用PSENet模型,文本行识别是基于MASTER模型。最后,在对齐阶段,将检测的文本框和表格结构联合起来,将文本行识别的内容填充到相关位置上。在数据集PubTabNet上达到不错效果。表格结构识别的任务是重建HTML序列项及其在表中的相应位置,但忽略每个项中的文本内容。表格结构识别模型见上图右侧,它是基于MASTER改进而来,此模型有2个分支,一个是HTML序列标签预测;
2024-11-22 19:26:01
846
原创 Improving Table Structure Recognition with Visual-Alignment Sequential Coordinate Modeling(cvpr2023)
作者认为表格结构识别的目的是将非结构化表格图像的逻辑和物理结构提取成机器可读的格式。目前最新的端到端图像-文本方法通过两个解码器同时预测两种结构,其中物理结构(单元格的边界框)的预测是基于逻辑结构的表示。作者认为之前的方法对单元格边界框的预测不准,是由于逻辑表示缺乏局部视觉信息导致的。为此,作者提出了一个名为VAST的端到端的表格结构识别序列模型框架。它包含一个新的被来自逻辑结构解码器的非空单元格的表示而触发的坐标序列解码器。
2024-11-14 20:58:07
768
原创 Table Structure Extraction with Bi-directional Gated Recurrent Unit Networks(icdar2019)
文中提出了一种利用深度学习方法去抽取表格的行和列的方法,该方法首先对表格图像进行预处理,然后将其输入双向循环神经网络门控循环单元(GRU),后面接一个带softmax激活的全连接层。该网络从上到下以及从左到右扫描图像,并将每个输入分类为行分隔符或列分隔符。方法在数据集UNLV和ICDAR2013上取得了state-of-the-art。方法主要包括三个模块:1).图像预处理:将包含文本的表格图像转换为不包含文本特征的自然图像。
2024-11-14 20:56:05
536
原创 LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment(icdar202
作者认为基于表格结构特征,发现获取文本区域的对齐边界框可以有效地保持不同单元格的整个相关范围。然而,由于视觉上的模糊性,对齐的边界框难以准确预测。在本文中,作者的目标是通过充分利用所提出的局部特征中的文本区域和全局特征中的单元格关系的视觉信息来获得更可靠的对齐边界框。为此,文中提出了局部和全局金字塔掩码对齐(Local and Global Pyramid Mask Alignment)框架,在局部和全局特征映射(feature map)中均采用软金字塔掩码学习机制。
2024-11-12 13:27:30
769
原创 LGPMA: Complicated Table Structure Recognition with Local and Global Pyramid Mask Alignment(icdar20
作者认为基于表格结构特征,发现获取文本区域的对齐边界框可以有效地保持不同单元格的整个相关范围。然而,由于视觉上的模糊性,对齐的边界框难以准确预测。在本文中,作者的目标是通过充分利用所提出的局部特征中的文本区域和全局特征中的单元格关系的视觉信息来获得更可靠的对齐边界框。为此,文中提出了局部和全局金字塔掩码对齐(Local and Global Pyramid Mask Alignment)框架,在局部和全局特征映射(feature map)中均采用软金字塔掩码学习机制。
2024-11-12 13:27:15
572
原创 SEMv2: Table Separation Line Detection Based on Instance Segmentation(Pattern Recognition 2024)
作者称坚持基于分割和合并方法的原则,提出了一个精确的表格结构识别器,称为SEMv2 (SEM: Split, Embed and Merge)。与之前在“分割”阶段的工作不同,本文的目标是解决表格分隔线实例级的识别问题,并引入基于条件卷积的表格分隔线检测策略。具体来说,采用自顶向下的方式设计“split”,首先检测表格分隔线实例,然后动态预测每个实例的表格分隔线掩码。通过以逐行/逐列方式处理表格分隔线掩码,可以准确地获得最终的表格分隔线形状。
2024-11-11 09:40:12
865
原创 FASPell: A Fast, Adaptable, Simple, Powerful Chinese Spell Checker Based On DAE-Decoder Paradigm(EMN
本文提出了一种由去噪自动编码器(DAE)和解码器(decoder)组成的中文拼写检查器——FASPell。首先,DAE通过利用BERT、XLNet、MASS等非监督预训练mask语言模型的力量,将监督学习所需的中文拼写检查数据量减少到<10000句。其次,解码器有助于消除混淆集的使用,这种混淆集在利用汉字相似性的显著特征方面缺乏灵活性和充分性。代码:https://github.com/iqiyi/FASPell。
2024-11-11 09:39:55
590
原创 Chunk-based Chinese Spelling Check with Global Optimization(EMNLP2020)
作者认为,一方面,以往的工作大多只考虑对汉字读音或字形相近的错字进行校正,而没有对视觉上和语音上不相关的错字进行校正;另一方面,pipeline的体系结构被广泛用于处理各个模块中不同类型的拼写错误,这很难优化。
2024-11-09 22:46:52
935
原创 Correcting Chinese Spelling Errors with Phonetic Pre-training(ACL2021)
作者认为中文拼写纠错(CSC)现有的方法要么只使用预训练的语言模型,要么将语音信息作为外部知识。在本文中,我们提出了一种新的端到端CSC模型,利用强大的预训练和微调方法,将语音特征集成到语言模型中。在训练语言模型中,我们用语音特征和与之相似的单词代替了传统的用特殊标记来屏蔽单词的方法。我们进一步提出了一种自适应加权目标,在统一的框架下联合训练错误检测和纠错。方法首先修改预训练的掩码语言模型(masked language model)的学习任务。
2024-11-09 22:46:34
765
原创 Dynamic Connected Networks for Chinese Spelling Check(ACL2021)
文中认为基于bert的非自回归语言模型依赖于输出独立性假设。不适当的独立性假设阻碍了基于bert的模型学习目标token之间的依赖关系,从而导致了不连贯的问题。为些,提出了一种名为Dynamic Connected Networks(DCN)的新架构,它通过拼音增强候选生成器生成候选中文字符然后利用基于注意力的网络对相邻中文字符之间的依赖关系进行建模。在数据集SIGHAN 2013,SIGHAN 2014以及SIGHAN 2015 达到了state-of-the-art。
2024-11-08 16:16:37
437
原创 Dynamic Connected Networks for Chinese Spelling Check(ACL2021)
文中认为基于bert的非自回归语言模型依赖于输出独立性假设。不适当的独立性假设阻碍了基于bert的模型学习目标token之间的依赖关系,从而导致了不连贯的问题。为些,提出了一种名为Dynamic Connected Networks(DCN)的新架构,它通过拼音增强候选生成器生成候选中文字符然后利用基于注意力的网络对相邻中文字符之间的依赖关系进行建模。在数据集SIGHAN 2013,SIGHAN 2014以及SIGHAN 2015 达到了state-of-the-art。
2024-11-08 16:16:19
394
原创 Spelling Error Correction with Soft-Masked BERT(ACL2020)
目前该任务的最先进的方法是基于BERT(语言表示模型)从句子的每个位置的候选字符列表中选择一个字符进行纠正(包括非纠正)。然而,作者认为该方法的准确性可能不是最优的,因为BERT没有足够的能力来检测每个位置是否存在错误,这显然是由于使用掩语言建模(mask language model)的预训练方式(在BERT的预训练中,只有15%的字符被屏蔽用于预测,导致学习的模型不具备足够的错误检测能力)。
2024-11-07 12:25:28
552
原创 Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models(ACL2021)
文中认为CSC(Chinese Spelling Correction)模型可能无法纠正混淆集所涵盖的拼写错误,并且还会遇到未见过的拼写错误。为些提出了一种方法,该方法不断识别模型的弱点,以产生更有价值的训练实例,并应用特定任务的预训练策略来增强模型。生成的对抗性示例逐渐添加到训练集中。代码:https://github.com/FDChongli/TwoWaysToImproveCSC在本研究中,我们希望在训练CSC模型时同时进行探索(未知拼写错误)和利用(混淆集覆盖的拼写错误)。
2024-11-07 12:25:06
562
原创 SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check(EMNLP2021)
作者认为许多模型利用预定义的混淆集来学习正确字符与其视觉上相似或语音上相似的误用字符之间的映射,但映射可能是域外的。为此,我们提出了SpellBERT,一个基于图的额外特征和独立于混淆集的预训练模型。为了明确地捕捉这两种错误模式(音似和形似,如下图),我们使用了一个图神经网络来引入词根和拼音信息作为视觉和语音特征。为了更好地将这些特征与字符表示融合,我们设计了类似于预训练任务的掩码语言模型(masked language model)。SpellBert只有Bert一半大小。
2024-11-06 20:43:52
783
原创 Global Attention Decoder for Chinese Spelling Error Correction(ACL2021)
作者认为现有的纠错方法大多是基于局部上下文信息进行纠错,没有考虑句子中错词的影响。将注意力放在错误上下文信息上可能会误导并降低CSC(Chinese Spelling Correction)的整体性能。为此,提出了一种用于CSC的全局注意力解码器(GAD)方法。具体而言,该方法学习了潜在正确输入字符与潜在错误候选字符之间的全局关系。获得丰富的全局上下文信息,减轻了局部错误上下文信息的影响。
2024-11-06 20:43:37
727
原创 Global Attention Decoder for Chinese Spelling Error Correction(ACL2021)
作者认为现有的纠错方法大多是基于局部上下文信息进行纠错,没有考虑句子中错词的影响。将注意力放在错误上下文信息上可能会误导并降低CSC(Chinese Spelling Correction)的整体性能。为此,提出了一种用于CSC的全局注意力解码器(GAD)方法。具体而言,该方法学习了潜在正确输入字符与潜在错误候选字符之间的全局关系。获得丰富的全局上下文信息,减轻了局部错误上下文信息的影响。
2024-11-05 08:45:14
379
原创 PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction(ACL2021)
作者提出了一种基于错误拼写知识的预训练屏蔽语言模型(PLOME -> Pre-trained masked Language model with Misspelled knowledge),该模型可以联合学习如何理解语言和纠正拼写错误。为此,PLOME根据混淆集屏蔽具有相似字符的所选token,而不是像BERT那样使用固定token “[MASK]”。除了字符预测,PLOME还引入了语音预测,从语音层面学习拼错知识。此外,语音和视觉相似性知识对这项任务很重要。
2024-11-05 08:45:02
265
原创 PHMOSpell: Phonological and Morphological Knowledge Guided Chinese Spelling Check(ACL2021)
作者认为目前大多数中文拼写错误都属于音似或形似造成的错误,如上图。但以往的方法很少利用中文字符的语音和形态知识,或严重依赖外部资源来建模字符的相似度。为此,文中提出了一种端到端可训练的模型叫PHMOSpell,其提升了CSC(Chinese Spelling Check)利用多模态信息的性能。具体而言,我们分别从音频和视觉模式中获得汉字的拼音和字形表示,并通过精心设计的自适应门控机制将其集成到预训练的语言模型中。方法通过自适应门控机制,在预训练模型中融合了拼音和字形特征。
2024-11-04 09:00:20
430
原创 Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese Grammatical Error Correction(ACL2021
作者语法错误类型以及相应的纠正有3类,如上图所示:A.替换(Substitution):如音似造成的错误,这可通过替换进行校正而没有改变整个句子结构,这是一个固定长度的操作,如Type1。B.删除和插入(Deletion and Insertion):这2种情况主要处理冗余字符和遗漏字符,如Type2。C.局部改写(Local paraphrasing):有时,替换、删除、插入等简单的操作不能直接纠正错误。因此,需要微调改写来重新排序句子的部分单词,如Type3。
2024-11-04 09:00:02
388
原创 Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking(ACL2021)
作者认为汉语拼写错误大多是语义、语音或图形相近的汉字误用造成的。之前的方法要么使用启发式方法,要么使用手工制作的混淆集来预测正确的字符。在本文中,我们直接利用汉字的多模态信息,提出了一种名为realise的中文拼写检查器。realise模型通过(1)捕获输入字符的语义、语音和图形信息;(2)有选择地混合这些模态中的信息去预测正确的输出。代码:https://github.com/DaDaMrX/ReaLiSe。
2024-11-03 09:20:18
694
原创 An Error-Guided Correction Model for Chinese Spelling Error Correction(EMNLP2022)
模型需要避免过度校正,并将正确的token与语音和视觉上相似的token区分开来。本文提出了一种错误引导(error-guided)纠错模型(EGCM),以提高汉语拼写纠错能力。利用BERT的强大功能,提出了一种新的零样本错误检测方法来进行初步检测,引导我们的模型更多地关注编码过程中可能出现的错误token,避免在生成过程中修改正确的token。此外,引入了一个新的损失函数来整合错误混淆集,使我们的模型能够区分容易被误用的token。再者,此模型支持高效并行解码,以满足实际应用需求。
2024-11-03 09:18:49
698
原创 ## CRASPell:A Contextual Typo Robust Approach to Improve Chinese Spelling Correction(ACL2022)
作者认为基于bert的纠错模型有2个限制:(1)文本中有多个错别字符(文本中超过1个错别字),会导致效果不好;(2)倾向将低频字符过纠为高频字符。为了使我们的模型对错别字带来的上下文噪声具有鲁棒性,我们的方法首先为每个训练样本构建一个有噪声的上下文。然后,校正模型被强制产生基于噪声和原始上下文的相似输出。此外,为了解决过度纠错问题,我们引入了copy机制,以鼓励我们的模型在纠错字符和输入字符根据给定上下文都有效时更倾向于选择输入字符(原始输入的字符和纠正后的字符在上下文都有效时)。
2024-11-03 09:18:26
586
原创 MDCSpell: A Multi-task Detector-Corrector Framework for Chinese Spelling Correction(ACL2022)
作者认为基于Bert的纠错模块直接对句子的每个字符进行校正,这不是最优的,因为它们只根据上下文来纠正句子的每个字符,而上下文很容易被拼写错误的字符误导。还有一些工作提出使用错误检测器(error detector)通过mask掉检测到的错误来指导校正。然而,这些方法抑制了拼错字符的视觉或语音特征,而这些特征对校正至关重要。为此,提出了一种新的通用检测-校正多任务框架,其中校正器使用BERT来捕获原始句子中每个字符的视觉和语音特征,检测器使用一个轻型transformer来检测拼错字符的位置。
2024-11-02 07:57:01
475
原创 Chinese Spelling Correction as Rephrasing Language Model(AAAI2024)
目前最先进的方法将CSC(Chinese Spelling Correction)作为序列标注任务,并在句子对上微调基于bert的方法。然而,我们注意到在将一个字符标注为另一个字符的过程中存在一个严重缺陷,即校正过于依赖于错误。这与人类的思维方式相反,在人类的思维方式中,人们根据语义重新表述完整的句子,而不是仅仅根据之前记忆的错误模式。这样对于机器纠错带 来了通用性和移植性瓶颈。
2024-11-02 07:56:44
772
原创 Investigating Glyph-Phonetic Information for Chinese Spell Checking:What Works and What’s Next?(ACL2
之前的研究已经探索了利用字形和发音等信息来提高CSC(Chinese Spell Checking)模型识别拼错字符的能力,并在公共数据集上取得了较好的准确率。然而,这些CSC模型的泛化能力尚未得到很好的理解:尚不清楚它们是否包含字形-语音信息,如果包含,是否充分利用了这些信息。在本文中,我们旨在更好地理解字形语音信息在CSC任务中的作用,并提出改进的方向。代码:https://github.com/piglaker/ConfusionCluster。
2024-11-01 07:49:09
615
原创 Are Pre-trained Language Models Useful for Model Ensemble in Chinese Grammatical Error Correction?(A
模型集成被广泛用于语法错误纠正(GEC),用于提高了模型的性能。假设基于预训练语言模型(PLMs)计算的困惑度(PPL)的模型集成将有利于GEC系统。为此,我们探索了几种基于具有四个复杂单一模型的强预训练语言模型集成策略。然而,在基于预训练语言模型的集成之后,性能并没有提高,甚至会变得更差。这个令人惊讶的结果让我们对数据进行了详细的分析,并提出了一些关于GEC的见解。在测试数据中,正确句子的人为参考远远不够,正确句子与惯用句子之间的差距值得我们关注。
2024-11-01 07:48:54
456
原创 GrammarGPT Exploring Open-Source LLMs for Native Chinese Grammatical Error Correction with Supervise
语法纠错的目的是自动纠正不符合语法的句子。最近,一些工作已经证明了闭源大型语言模型(llm,例如ChatGPT)在语法错误纠正方面的出色能力。然而,开源llms(大语言模型)的潜力仍未得到开发。本文介绍了开源llm GrammarGPT,初步探讨了其在汉语语法纠错方面的潜力。GrammarGPT的核心配方是利用chatgpt生成和人工注释的混合数据集。对于有线索的语法错误,我们提出了一种启发式方法,通过提供线索来引导ChatGPT生成不符合语法的句子。
2024-10-30 20:12:29
750
原创 Corrective Retrieval Augmented Generation
如下图,构建一个检索评估器来评估检索的文档与输入的相关性。在对置信度进行估计的基础上,触发正确、不正确、不确定(Correct,Incorrect,Ambiguous)的知识检索动作。所提出的方法为纠错检索增强生成(CRAG),旨在自我纠正检索结果并提高生成文档的利用率。引入了一个轻量级检索评估器来评估给定查询的检索文档的总体质量。该评估器是检索增强生成(RAG)的关键组成部分,通过审查和评估检索文档的相关性和可靠性,为信息生成做出贡献。
2024-10-30 15:45:18
298
原创 Corrective Retrieval Augmented Generation
如下图,构建一个检索评估器来评估检索的文档与输入的相关性。在对置信度进行估计的基础上,触发正确、不正确、不确定(Correct,Incorrect,Ambiguous)的知识检索动作。所提出的方法为纠错检索增强生成(CRAG),旨在自我纠正检索结果并提高生成文档的利用率。引入了一个轻量级检索评估器来评估给定查询的检索文档的总体质量。该评估器是检索增强生成(RAG)的关键组成部分,通过审查和评估检索文档的相关性和可靠性,为信息生成做出贡献。
2024-10-30 15:45:00
473
原创 T-RAG: LESSONS FROM THE LLM TRENCHES
大型语言模型(llm)越来越多地应用于各个领域,包括对私有企业文档的问答,其中数据安全性和鲁棒性至关重要。检索增强生成(retrieve - augmented Generation, RAG)是构建此类应用程序的重要框架,但要确保其健壮性,需要对其进行广泛的定制。本研究分享了在私有组织文档上部署LLM应用程序的经验,该应用程序使用名为Tree-RAG (T-RAG)的系统,该系统包含实体层次结构以提高性能。评估证明了这种方法的有效性,为现实世界的llm应用提供了有价值的见解。
2024-10-29 13:17:17
502
原创 MySQL学习笔记
在满足第一范式的前提下,其他列都必须完全依赖于主键列。范式设计得越详细,对某些实际操作可能会更好,但并非都有好处,需要对项目的实际情况进行设定。修改后就不存在其他列之间的传递依赖关系,其他列都只依赖于主键列,满足了第三范式的设计!在满足第二范式的前提下,除了主键列之外,其他列之间不能有传递依赖关系。两列,也就不满足了第三范式的设计:其他列之间不能有传递依赖关系。表中的其他字段又完全依赖于主键。满足了第二范式的设计!这就不满足第二范式:其他列都必须完全依赖于主键列!实际上,在这张订单表中,
2024-10-29 13:17:02
486
原创 1 到 10
分析表发现,至少有 2 名学生选修的课程是。表,就能找出所有和学生相关的。也就是说,我们要查询所有。字段值就可以了,如何做呢?,以 3 开头的课程是。通过分析可以发现,只要把。
2024-10-28 12:45:07
312
原创 事务的实际应用,让我们再回到银行转账项目:
事务的实际应用,让我们再回到银行转账项目:这时假设在转账时发生了意外,就可以使用 回滚到最后一次提交的状态:这时我们又回到了发生意外之前的状态,也就是说,事务给我们提供了一个可以反悔的机会。假设数据没有发生意外,这时可以手动将数据真正提交到数据表中: 。事务的默认提交被开启 ( ) 后,此时就不能使用事务回滚了。但是我们还可以手动开启一个事务处理事件,使其可以发生回滚:仍然使用 提交数据,提交后无法再发生本次事务的回滚。事务的 ACID 特征与使用事务的四大特征:事务的隔离性可分为四种 (
2024-10-28 12:44:54
371
原创 三表关联查询
表中,但是还无法知道哪门课程至少有5名学生选修,所以还需要根据。表中关联学生的学号和课堂号,我们只要围绕着。我们已经找到和教师编号有关的字段就在。,在找出所有成绩高于。
2024-10-27 00:27:27
364
原创 MySQL索引
索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。在没有索引的情况下,做查询操作的时候数据库会遍历全部数据后选择符合条件的;普通索引允许被索引的列包含重复的值, 比如人的名字. 如果这列的值都是唯一的那么就可以使用唯一索引.他能改善查询的效率.另外一点是在有新数据插入的时候, 会自动检查新记录的字段的值是否已经存在了,如果存在MySQL会拒绝插入.因此很多场合,唯一索引的另一个目的是避免数据重复插入.创建索引后,相应的索引文件也增大了不少.
2024-10-25 11:37:23
314
原创 Git常用命令备忘 ==============
但只会使用以上命令是不够的,在这个复杂纷繁的程序世界,事情没你想的那么简单,不过有些事情想想就够了,不一定要去做,真要去做你也做不来,比如自己写个git来,但是,更多地的了解git是我们每个程序员都可以做得到的事。暂时用不着的命令记不住,不理解也没关系,哪天遇到问题,再来找找有没有合适的方法也不迟。几乎所有常用命令就是围绕这几个概念来操作的,一图胜千言,下面是一张比较简单的图,包括了最基本的命令。git的配置文件是.gitconfig,支持全局配置和项目配置,全部配置对所有项目有效,用。
2024-10-25 11:37:09
159
基于单通道脑电信号的自动睡眠分期研究.zip
2024-12-10
北京二手房房价预测与分析+高分项目+源码.zip
2024-12-10
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题Attachment 5.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题Attachment 4.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题Attachment 3.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题Attachment 2.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题Attachment 1.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛参赛纪律和论文提交方式说明.pdf
2024-11-22
2024 APMCM Summary Sheet.docx2024年第十四届APMCM亚太地区大学生数学建模竞赛2024 APMCM
2024-11-22
2024 APMCM Essay format and submission specifications.pdf
2024-11-22
2024 APMCM Control Sheet.docx
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛2024 APMCM Problem A.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛2024 APMCM Problem B.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛2024 APMCM Problem C.pdf
2024-11-22
2024年第十四届APMCM亚太地区大学生数学建模竞赛d 题.pdf
2024-11-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人