[BZOJ1412] [ZJOI2009] 狼与羊的故事 (最小割)

给定一个 N×M 方格矩阵,每个格子可在 0,1,2 中取值。要求在方格的边上进行划分,使得任意联通块内不同时包含 1 2的格子。


若对方格矩阵的形式感到困惑,我们可以先考虑图上的形式。
假设图中有节点 W1 , Q1 , S1 , S2 ,且 W1 与其它三者间各有一边,此外 Q1 S1 间还有一边。 W1 是1值节点, S1,S2 是2值节点。现在考虑进行划分。
我们发现在原问题中, 0 值点无论和哪个点划在一个连通块内都是合法的。换言之,0值节点在这里只起到传导连通的作用。亦即任意两个连通节点间可以有任意个 0 值节点。
根据这一性质,我们对图进行分层。建立网络,将Wi作为第一层(靠近源点), Si 作为最后一层(靠近汇点), Qi 放中间。将原图中的连接关系单向地对应到网络中:

  • Wi 向任意点的连接均转化为一条容量为 1 的弧
  • Si向任意点的连接均被忽略
  • Qi 向非 Wi 点的连接均转化为一条容量为 1 的弧

容易发现,由于原图是无向图,我们在建立流网络时对其定向,从而避免对一个划分边的重复计算。而定向的依据则是依据Wi>Qi>Si的优先级顺序进行的。
这样建图后,求出的最大流就是流网络的最小割,也就是答案。


分析完图上的情况后,这里的情形就显得简单了。
我们考虑对任意格子 (i,j) ,其四周的格子即是上文中与之直接相连的节点。我们将图中的关系放到方格矩阵中处理就可以了。


代码实现:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
#define G g
using namespace std;
struct Item{int p,v,c;};
Item item(int _p,int _v,int _c){Item it;it.p=_p;it.v=_v;it.c=_c;return it;}
vector <Item> g[100005];
int n,m,t1,t2,t3,dis[100005],d[100005],vis[100005],s,t,t4,costs=0,tans,ans,inc[100005],cnt=0,k,inp[100005][4],edg[100005];
vector <int> oppo[100005];
int dinic_spfa(){
    memset(dis,0xff,sizeof dis);
    memset(d,0x3f,sizeof d);
    memset(vis,0x00,sizeof vis);
    memset(inc,0x00,sizeof inc);
    queue <int> q;
    q.push(s); dis[s]=0; d[s]=0;
    while(!q.empty()){ 
        int p=q.front(); q.pop(); vis[p]=0; inc[p]++;
        for(int i=0;i<g[p].size();i++){
            if(d[g[p][i].p]>d[p]+g[p][i].v&&g[p][i].c>0){
                dis[g[p][i].p]=p; edg[g[p][i].p]=i;
                d[g[p][i].p]=d[p]+g[p][i].v;
                if(vis[g[p][i].p]==0) vis[g[p][i].p]=1, q.push(g[p][i].p);}}}
    return dis[t]>0;}
int dinic_dfs(){
    int p=t,a=0x7fffffff;
    while(p-s) a=min(a,g[dis[p]][edg[p]].c),p=dis[p];
    int lc=costs;
    p=t;
    while(p-s){
        int tc,i=edg[p];
        G[dis[p]][i].c-=a,
        G[p][oppo[dis[p]][i]].c+=a,
        costs+=a*G[dis[p]][i].v;
        p=dis[p];}
    return a;}
int dinic_main(int src,int dest){
    s=src; t=dest; 
    while(dinic_spfa()) ans+=dinic_dfs();
    return ans;}
void build(int w,int x,int y,int z){
    oppo[x].push_back(g[w].size());
    g[w].push_back(item(x,z,y));
    oppo[w].push_back(g[x].size());
    g[x].push_back(item(w,-z,0));} 
int main(){
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=m;i++) scanf("%d%d%d%d",&inp[i][0],&inp[i][1],&inp[i][2],&inp[i][3]),
        build(inp[i][0],inp[i][1],inp[i][2],0);
    dinic_main(1,n);
    printf("%d ",ans);
    for(int i=1;i<=m;i++)
        build(inp[i][0],inp[i][1],0x7fffffff,inp[i][3]);
    build(0,1,k,0);
    dinic_main(0,n);
    printf("%d\n",costs);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值