关于np.newaxis的一点理解

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/molu_chase/article/details/78619731

经常在sklearn上看到np.newaxis,这里记录一下我的理解

np.arange(0, 10)

这句话 生成的是一个一维的数组,如下:

[0 1 2 3 4 5 6 7 8 9]

输出其shape:(10,)

那么我如何才能将其转化为shape=(1,10)呢

可以用两种方法:

1.使用shape

y=np.arange(1, 11)
y.shape=(10,1)
print(y)

结果如下:

[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]]

2. 使用np.newaxis

print(np.arange(0, 10)[:, np.newaxis])

结果如下:

[[0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]
 [8]
 [9]]

如上所示,应该清楚了np.newaxis了吧

上面的代码实质就是将原本的(10,)移到行上,然后新增一列

展开阅读全文

没有更多推荐了,返回首页