[论文阅读] MATCHA : Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering

原文链接:http://arxiv.org/abs/2212.09662

源码链接:已经集成在transformers库中,可直接加载模型(MatCha (huggingface.co)

启发:MATCHA模型关键是具有两个能力,第一个是把图表图像还原成表格以及代码,第二个是强大的数学推理能力。但是数学推理能力依旧有提升空间,并且由于这种端到端的思路缺乏中间过程,可解释性较差,无法有针对性的解决数学推理的问题。之后的研究开始关注two-stage方法,需要思考two-stage方法相对端到端方法的优势性。

Abstract

        最先进的LLM在chart、plot等视觉语言数据上表现不佳,本文提出了 MATCHA (Math reasoning and Chart derendering pretraining) 来增强视觉语言模型在联合建模图表/绘图和语言数据方面的能力。具体来说,我们提出了几个预训练任务,涵盖图表解构和数值推理,它们是视觉语言建模的关键能力。我们从 Pix2Struct 开始执行 MATCHA 预训练,Pix2Struct 是最近提出的一种图像到文本的视觉语言模型。在 PlotQA 和 ChartQA 等标准基准测试中,MATCHA 模型的性能比最先进的方法高出近 20%。我们还研究了 MATCHA 预训练转移到屏幕截图、教科书图表和文档数字等领域的能力,并观察整体改进,验证了 MATCHA 预训练对更广泛的视觉语言任务的有用性。

1 Introduction

        多数视觉语言模型在ChartQA和PlotQA等任务上表现不佳。Pix2Struct (Lee et al., 2023) 是最近提出的一种视觉定位语言预训练策略,其性能明显优于标准视觉语言模型,也优于各种基于 OCR 的方法。Pix2Struct 设计了一种新颖的掩码网页屏幕截图解析任务,也设计了一种可变分辨率输入表示,用于预训练图像到文本encoder-decoder Transformer。在这项工作中,我们使用 Pix2Struct 作为基础模型,并通过图表渲染和数学推理任务进一步对其进行预训练。

        我们认为视觉语言理解需要两个关键要素:(1) 布局理解(包括数字提取及其组织)和 (2&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值