一、分区表
对于用户而言,分区表是一个独立的逻辑表,但是底层是由多个物理子表组成。分区表对于用户而言是一个完全封装底层实现的黑盒子,对用户而言是透明的,从文件系统中可以看到多个使用#分隔命名的表文件。
mysql在创建表时使用partition by子句定义每个分区存放的数据,在执行查询的时候,优化器会根据分区定义过滤那些没有我们需要数据的分区,这样查询就无须扫描所有分区。
分区的主要目的是将数据安好一个较粗的力度分在不同的表中,这样可以将相关的数据存放在一起。
创建了分区表以后,数据会分布在不同的数据文件里,数据文件名称后面会加#。这些物理文件,不一定要在同一台物理设备上,可以分布在不同的机器上。
1.1 分区表的应用场景
-
表非常大以至于无法全部都放在内存中,或者只在表的最后部分有热点数据,其他均是历史数据
-
分区表的数据更容易维护
- 批量删除大量数据可以使用清除整个分区的方式
- 对一个独立分区进行优化、检查、修复等操作
-
分区表的数据可以分布在不同的物理设备上,从而高效地利用多个硬件设备
-
可以使用分区表来避免某些特殊的瓶颈
- innodb的单个索引的互斥访问
- ext3文件系统的inode锁竞争
-
可以备份和恢复独立的分区
1.2 分区表的限制
- 一个表最多只能有1024个分区,在5.7版本的时候可以支持8196个分区
- 在早期的mysql中,分区表达式必须是整数或者是返回整数的表达式,在mysql5.5中,某些场景可以直接使用列来进行分区
- 如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来
- 分区表无法使用外键约束
1.3 分区表的原理
分区表由多个相关的底层表实现,这个底层表也是由句柄对象标识,我们可以直接访问各个分区。存储引擎管理分区的各个底层表和管理普通表一样(所有的底层表都必须使用相同的存储引擎),分区表的索引知识在各个底层表上各自加上一个完全相同的索引。从存储引擎的角度来看,底层表和普通表没有任何不同,存储引擎也无须知道这是一个普通表还是一个分区表的一部分。
分区表的操作按照以下的操作逻辑进行:
select查询
当查询一个分区表的时候,分区层先打开并锁住所有的底层表,优化器先判断是否可以过滤部分分区,然后再调用对应的存储引擎接口访问各个分区的数据
insert操作
当写入一条记录的时候,分区层先打开并锁住所有的底层表,然后确定哪个分区接受这条记录,再将记录写入对应底层表
delete操作
当删除一条记录时,分区层先打开并锁住所有的底层表,然后确定数据对应的分区,最后对相应底层表进行删除操作
update操作
当更新一条记录时,分区层先打开并锁住所有的底层表,mysql先确定需要更新的记录再哪个分区,然后取出数据并更新,再判断更新后的数据应该再哪个分区,最后对底层表进行写入操作,并对源数据所在的底层表进行删除操作
有些操作时支持过滤的,例如,当删除一条记录时,MySQL需要先找到这条记录,如果where条件恰好和分区表达式匹配,就可以将所有不包含这条记录的分区都过滤掉,这对update同样有效。如果是insert操作,则本身就是只命中一个分区,其他分区都会被过滤掉。mysql先确定这条记录属于哪个分区,再将记录写入对应得曾分区表,无须对任何其他分区进行操作
虽然每个操作都会“先打开并锁住所有的底层表”,但这并不是说分区表在处理过程中是锁住全表的,如果存储引擎能够自己实现行级锁,例如innodb,则会在分区层释放对应表锁。
1.4 分区表的类型
-
范围分区
- 根据列值在给定范围内将行分配给分区
范围分区.md
- 根据列值在给定范围内将行分配给分区
-
列表分区
类似于按range分区,区别在于list分区是基于列值匹配一个离散值集合中的某个值来进行选择:CREATE TABLE employees ( id INT NOT NULL, fname VARCHAR(30), lname VARCHAR(30), hired DATE NOT NULL DEFAULT '1970-01-01', separated DATE NOT NULL DEFAULT '9999-12-31', job_code INT, store_id INT ) PARTITION BY LIST(store_id) ( PARTITION pNorth VALUES IN (3,5,6,9,17), PARTITION pEast VALUES IN (1,2,10,11,19,20), PARTITION pWest VALUES IN (4,12,13,14,18), PARTITION pCentral VALUES IN (7,8,15,16) ); ```
-
列分区
mysql从5.5开始支持column分区,可以认为i是range和list的升级版,在5.5之后,可以使用column分区替代range和list,但是column分区只接受普通列不接受表达式
CREATE TABLE `list_c` ( `c1` int(11) DEFAULT NULL, `c2` int(11) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=latin1 /*!50500 PARTITION BY RANGE COLUMNS(c1) (PARTITION p0 VALUES LESS THAN (5) ENGINE = InnoDB, PARTITION p1 VALUES LESS THAN (10) ENGINE = InnoDB) */ CREATE TABLE `list_c` ( `c1` int(11) DEFAULT NULL, `c2` int(11) DEFAULT NULL, `c3` char(20) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=latin1 /*!50500 PARTITION BY RANGE COLUMNS(c1,c3) (PARTITION p0 VALUES LESS THAN (5,'aaa') ENGINE = InnoDB, PARTITION p1 VALUES LESS THAN (10,'bbb') ENGINE = InnoDB) */ CREATE TABLE `list_c` ( `c1` int(11) DEFAULT NULL, `c2` int(11) DEFAULT NULL, `c3` char(20) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=latin1 /*!50500 PARTITION BY LIST COLUMNS(c3) (PARTITION p0 VALUES IN ('aaa') ENGINE = InnoDB, PARTITION p1 VALUES IN ('bbb') ENGINE = InnoDB) */
-
hash分区
基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含myql中有效的、产生非负整数值的任何表达式:CREATE TABLE employees ( id INT NOT NULL, fname VARCHAR(30), lname VARCHAR(30), hired DATE NOT NULL DEFAULT '1970-01-01', separated DATE NOT NULL DEFAULT '9999-12-31', job_code INT, store_id INT ) PARTITION BY HASH(store_id) PARTITIONS 4; CREATE TABLE employees ( id INT NOT NULL, fname VARCHAR(30), lname VARCHAR(30), hired DATE NOT NULL DEFAULT '1970-01-01', separated DATE NOT NULL DEFAULT '9999-12-31', job_code INT, store_id INT ) PARTITION BY LINEAR HASH(YEAR(hired)) PARTITIONS 4;
-
key分区
类似于hash分区,区别在于key分区只支持一列或多列,且mysql服务器提供其自身的哈希函数,必须有一列或多列包含整数值:CREATE TABLE tk ( col1 INT NOT NULL, col2 CHAR(5), col3 DATE ) PARTITION BY LINEAR KEY (col1) PARTITIONS 3;
-
子分区
在分区的基础之上,再进行分区后存储
CREATE TABLE `t_partition_by_subpart` ( `id` INT AUTO_INCREMENT, `sName` VARCHAR(10) NOT NULL, `sAge` INT(2) UNSIGNED ZEROFILL NOT NULL, `sAddr` VARCHAR(20) DEFAULT NULL, `sGrade` INT(2) NOT NULL, `sStuId` INT(8) DEFAULT NULL, `sSex` INT(1) UNSIGNED DEFAULT NULL, PRIMARY KEY (`id`, `sGrade`) ) ENGINE = INNODB PARTITION BY RANGE(id) SUBPARTITION BY HASH(sGrade) SUBPARTITIONS 2 ( PARTITION p0 VALUES LESS THAN(5), PARTITION p1 VALUES LESS THAN(10), PARTITION p2 VALUES LESS THAN(15) );
1.5 如何使用分区表
如果需要从非常大的表中查询出某一段时间的记录,而这张表中包含很多年的历史数据,数据是按照时间排序的,此时应该如何查询数据呢?
因为数据量巨大,肯定不能在每次查询的时候都扫描全表。考虑到索引在空间和维护上的消耗,也不希望使用索引,即使使用索引,会发现会产生大量的碎片,还会产生大量的随机IO,但是当数据量超大的时候,索引也就无法起作用了,此时可以考虑使用分区来进行解决
-
全量扫描数据,不要任何索引
使用简单的分区方式存放表,不要任何索引,根据分区规则大致定位需要的数据为止,通过使用where条件将需要的数据限制在少数分区中,这种策略适用于以正常的方式访问大量数据
-
索引数据,并分离热点
如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将这部分热点数据单独放在一个分区中,让这个分区的数据能够有机会都缓存在内存中,这样查询就可以只访问一个很小的分区表,能够使用索引,也能够有效的使用缓存
1.6 在使用分区表的时候需要注意的问题
- null值会使分区过滤无效
- 分区列和索引列不匹配,会导致查询无法进行分区过滤
- 选择分区的成本可能很高
- 打开并锁住所有底层表的成本可能很高
- 维护分区的成本可能很高