【最多点覆盖 / 剪枝优化】ACM-ICPC 2018 沈阳赛区网络预赛 - The cake is a lie

题目链接https://nanti.jisuanke.com/t/A1993


题意

平面上给出若干个半径相同且互不相交的n个小圆,问能够包含s个小圆的大圆半径最小是多少


题解

标准做法:二分答案 + 最多点覆盖
复杂度: O ( ( l o g D e p s n 2 l o g n ) ) O((log\frac{D}{eps} n^2logn)) O((logepsDn2logn))
在这里插入图片描述


#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const int N=4e5+7;
const db eps=1e-8;
const db inf=1e4;
const db pi=acos(-1.0);
int t,n,s;
db rr;
int sign(db k){if(k>eps) return 1;if(k<-eps) return -1;return 0;}
int dcmp(db k1,db k2){return sign(k1-k2);}
struct Point{
    db x,y;
    Point operator - (const Point k)const{return (Point){x-k.x,y-k.y};}
    bool operator == (const Point k)const{return dcmp(x,k.x)==0&&dcmp(y,k.y)==0;}
    db abs2(){return x*x+y*y;}
    db abs(){return sqrt(abs2());}
    db dis2(Point k){return ((*this)-k).abs2();}
    db dis(Point k){return sqrt(dis2(k));}
    void input(){scanf("%lf%lf",&x,&y);}
    void output(){printf("(%f,%f)\n",x,y);}
}p[N];
struct Node{
    db ang;
    int flag;
    bool operator<(const Node k)const{
        if(dcmp(ang,k.ang)==0) return flag>k.flag;
        return ang<k.ang;
    }
}q[N];
bool ck(db r){
    int res=1;
    for(int i=1;i<=n;i++){
        int tot=0;
        int sum=1;
        for(int j=1;j<=n;j++){
            if(i==j) continue;
            db d=p[i].dis(p[j]);
            if(dcmp(d,2*r)>0) continue;
            if(sign(d)==0){sum++;continue;}
            db th=atan2(p[j].y-p[i].y,p[j].x-p[i].x);
            if(th<0) th+=2*pi;
            db ph=acos(d/2.0/r);
            q[++tot]=(Node){th-ph+2*pi,1};
            q[++tot]=(Node){th+ph+2*pi,-1};
        }
        sort(q+1,q+1+tot);
        for(int j=1;j<=tot;j++) res=max(res,sum+=q[j].flag);
    }
    return res>=s;
}
int main()
{
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&s);
        for(int i=1;i<=n;i++) p[i].input();
        scanf("%lf",&rr);
        if(n<s){printf("The cake is a lie.\n");continue;}
        db lo=0,hi=inf;
        while(hi-lo>eps){
            db mid=(lo+hi)/2;
            if(ck(mid)) hi=mid;
            else lo=mid;
        }
        printf("%.4f\n",lo+rr);
    }
}


有一个超级神奇的优化

https://www.zhihu.com/question/266750532%%%%%qls

先枚举点,然后再二分,这样可以做到剪枝。
如果当前点在此时答案已经不满足的情况下,就跳过。
期望的复杂度是: O ( n 2 l o g ( n ) + n ( l o g ( n ) ) 2 l o g ( D e p s ) ) O(n^2log(n)+n(log(n))^2log(\frac{D}{eps})) O(n2log(n)+n(log(n))2log(epsD))

在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
const int N=4e5+7;
const db eps=1e-8;
const db inf=1e4;
const db pi=acos(-1.0);
int t,n,s;
db rr;
int sign(db k){if(k>eps) return 1;if(k<-eps) return -1;return 0;}
int dcmp(db k1,db k2){return sign(k1-k2);}
struct Point{
    db x,y;
    Point operator - (const Point k)const{return (Point){x-k.x,y-k.y};}
    bool operator == (const Point k)const{return dcmp(x,k.x)==0&&dcmp(y,k.y)==0;}
    db abs2(){return x*x+y*y;}
    db abs(){return sqrt(abs2());}
    db dis2(Point k){return ((*this)-k).abs2();}
    db dis(Point k){return sqrt(dis2(k));}
    void input(){scanf("%lf%lf",&x,&y);}
    void output(){printf("(%f,%f)\n",x,y);}
}p[N];
struct Node{
    db ang;
    int flag;
    bool operator<(const Node k)const{
        if(dcmp(ang,k.ang)==0) return flag>k.flag;
        return ang<k.ang;
    }
}q[N];
bool ck(int i,db r){
    int res=1;
    int tot=0;
    int sum=1;
    for(int j=1;j<=n;j++){
        if(i==j) continue;
        db d=p[i].dis(p[j]);
        if(dcmp(d,2*r)>0) continue;
        if(sign(d)==0){sum++;continue;}
        db th=atan2(p[j].y-p[i].y,p[j].x-p[i].x);
        if(th<0) th+=2*pi;
        db ph=acos(d/2.0/r);
        q[++tot]=(Node){th-ph+2*pi,1};
        q[++tot]=(Node){th+ph+2*pi,-1};
    }
    sort(q+1,q+1+tot);
    for(int j=1;j<=tot;j++) res=max(res,sum+=q[j].flag);
    return res>=s;
}
int main()
{
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&s);
        for(int i=1;i<=n;i++) p[i].input();
        scanf("%lf",&rr);
        db ans=0;
        for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) ans=max(ans,p[i].dis(p[j]));
        if(n<s){printf("The cake is a lie.\n");continue;}
        for(int i=1;i<=n;i++){
            if(ck(i,ans)){
                db lo=0,hi=ans;
                while(hi-lo>eps){
                    db mid=(lo+hi)/2;
                    if(ck(i,mid)) hi=mid;
                    else lo=mid;
                }
                ans=lo;
            }
        }
        printf("%.4f\n",ans+rr);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值