【约瑟夫环】2018-2019 ACM-ICPC, Asia Shenyang Regional Contest - K - Let the Flames Begin

题目链接https://codeforces.com/gym/101955/problem/K


题意

给出一个长度为 n n n的约瑟夫环,标号为 k k k的人被淘汰。问第 m m m个人淘汰的初始标号。

1 ≤ n , m , k ≤ 1 e 18 1\leq n,m,k \leq 1e18 1n,m,k1e18 ∑ m i n ( m , k ) ≤ 2 e 6 \sum{min(m,k)}\leq 2e6 min(m,k)2e6


题解

初始标号如果以零开头的话,约瑟夫环有一个公式: d p [ n ] [ m ] = ( d p [ n − 1 ] [ m − 1 ] + k ) % n dp[n][m]=(dp[n-1][m-1]+k)\%n dp[n][m]=(dp[n1][m1]+k)%n,其中 d p [ n ] [ m ] dp[n][m] dp[n][m]表示以用有 n n n个人,第 m m m个人淘汰的初始标号。
很容易求得 d p [ n − m + 1 ] [ 1 ] dp[n-m+1][1] dp[nm+1][1],然后更新到 d p [ n ] [ m ] dp[n][m] dp[n][m]即可,更新分几种情况

  • 如果 m &lt; k m&lt;k m<k,直接暴力更新
  • 如果 m &gt; k m&gt;k m>k,那么就代表 n n n相对于 k k k很大,可以算出取模内能加上多少个 k k k,然后转化成乘法。
  • k = 1 k=1 k=1,特判一下

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e6+7;
ll t,cs;
ll n,m,k;
int main(){
    scanf("%lld",&t);
    while(t--){
        scanf("%lld%lld%lld",&n,&m,&k);
        if(k==1){
            printf("Case #%lld: %lld\n",++cs,m);
            continue;
        }
        if(m<=k){
            ll ans=(k-1)%(n-m+1);
            for(ll i=2,j=n-m+2;i<=m;i++,j++){
                ans=(ans+k)%j;
            }
            printf("Case #%lld: %lld\n",++cs,ans+1);
        }
        else{
            ll len=n-m+1;
            ll ans=(k-1)%(n-m+1);
            m--;
            while(m>0){
                ll x=(len-ans)/(k-1);
                if(m<=x){
                    ans=(ans+m*k)%(len+x);
                    m=0;
                }
                else{
                    ans=(ans+x*k)%(len+x);
                    ans=(ans+k)%(len+x+1);
                    m-=x+1;
                    len+=x+1;
                }
            }
            printf("Case #%lld: %lld\n",++cs,ans+1);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值