大数据就业前景如何,要学什么课程?

大数据作为热门技术领域,需求持续增长,薪资待遇高。学习大数据相关课程如Hadoop、Spark、Google Cloud Big Data等,有助于进入大数据开发、分析岗位。大数据不仅需要研发人才,也需应用人才,提供丰富的就业机会。推荐6个受欢迎的大数据课程,涵盖大数据导论、系统基础、算法和商业应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着互联网技术和人工智能的飞速发展,大数据已经成为当今最热门的技术领域之一。随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大,大数据领域工作人员薪资水平将持续增长,人才供不应求。

从近两年大数据方向研究生的就业情况看,大数据领域的工作岗位很多,尤其是大数据开发岗位,目前正从大数据平台开发延伸到大数据应用开发领域,这是大数据开始全面应用的必然结果。

大数据不仅需要研发型人才,也需要应用型人才,所以本科生的工作机会也比较多。随着人工智能平台的陆续推出,相比于大数据应用开发岗位来说,大数据平台开发岗位工作不仅薪资待遇更高,职业生命周期会更长,也会更容易进入云计算、人工智能等领域工作发展。

现在,越来越多的人选择学习大数据技术。你如果也希望进入大数据领域发展,要学习的主要课程包括:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。

我们从国内外知名大学和跨国公司的大数据课程中,根据注册人数、评分、评论和口碑进行排名,筛选出下面2023年6个最受欢迎的大数据MOOC课程,你可以在MOOC学习平台免费注册学习。

1. 大数据导论

加州大学圣地亚哥分校:Ilkay Altintas教授等 

 这个课程已有超过30万人注册学习,它是为考虑进入大数据领域工作的人准备的。你将了解大数据工程师所使用的工具和系统,学习应用MapReduce, Spark, Pig and Hive来使用Hadoop,了解用于可伸缩大数据分析的体系结构组件和编程模型,核心Aadoop堆栈组件的特性和价值,使用Hadoop安装和运行一个程序!

课程为期3周,每周6-7小时。课程主要内容包括:(1)大数据介绍;(2)大数据的特征和可扩展性的维度;(3)数据科学:从大数据中获取价值;(4)大数据系统和编程的基础;(5)系统:开始使用Hadoop。

2. 大数据系统基础

清华大学:王建民教授等

清华大学的大数据系统基础课程,你将了解大数据管理的工具平台、开发环境、基本原理,熟悉典型大数据工具与平台的特性,掌握大数据处理的基本开发方式。通过学习分析大数据实现原理与设计理论,你将能够增强大数据工具与平台的应用与开发能力

本课程被评为一流课程,有98个讲座视频。你学习的主要内容包括:云计算,文件存储,计算框架,内存计算,NoSQL,流数据处理等。你在学习本课程前,需要有一些编程语言(Java或C)、数据库原理、操作系统相关知识。

3. Google Cloud Big Data and Machine Learning Fundamentals

Google云端平台

 本课程介绍了在谷歌云上使用Vertex AI构建大数据管道和机器学习模型的过程、挑战和好处。识别谷歌云上的数据到人工智能的生命周期,以及大数据和机器学习的主要产品,使用Dataflow和Pub/Sub设计具有Dataflow、Pub/Sub和dDesign流管道的数据流,在谷歌云上构建机器学习解决方案,并使用AutoML构建一个机器学习管

本课程为期2周,每周3-6小时。你学习的主要内容包括:(1)谷歌云上的大数据和机器学习;(2)应用数据流的数据工程;(3)应用BigQuery于大数据;(4)谷歌云上的机器学习;(5)使用Vertex AI的机器学习工作流程。

4. 大数据算法

哈尔滨工业大学:王宏志教授

大数据在不论在研究还是工程领域都是热点之一,算法是大数据管理与计算的核心主题。这个大数据算法课程,你将学习大数据基本算法设计思想,包括概率算法、I/O有效算法和并行算法,让你接触到和传统算法课程不一样的算法设计与分析思路,并学习到大数据算法的前沿知识。

本课程分为10讲,每讲约1小时。课程主要内容包括:大数据算法、亚线性算法、亚线性算法例析、外存算法、外存查找结构、外存图数据算法、基于MapReduce的并行算法设计、MapReduce算法例析、非MapReduce的并行算法设计和众包算法。

5. Knowledge Management and Big Data in Business

香港理工大学:Eric Tsui教授等

 什么是大数据?我们如何从外行的角度来使用数据分析?什么是开放链接数据,它如何支持机器推理?如何从大数据中挖掘出新的知识?大数据的技术和社会问题是什么?香港理工大学的这个知识管理和大数据在商业中应用课程,不需要任何技术背景。你将学习知识管理、大数据和云计算的综合能力,并应用到新的商业时代中。

本课程为期8周,每周6-8小时。你将学到:(1)了解知识管理(KM)从业者在创造业务价值方面的作用;(2)熟悉捕获、处理、分类和组织知识的技术和工具;(3)如何通过分析来分析大量的数据和信息;(4)如何使用云服务来获得新的价值和业务模型;(5)了解社交媒体和技术在创造新业务中的作用。

6. Big Data, Hadoop, and Spark Basics

IBM公司

公司需要熟练和有前瞻性的大数据工程师,将公司的业务和技术应用于非结构化数据,如推文、帖子、图片、音频文件、视频、传感器数据和卫星图像等等,以识别潜在客户、已有客户、竞争对手和其他人的行为和偏好。

本课程为期6周,每周2-3小时。你将学习使用Hadoop、Hive和Spark等流行的大数据工具,以提高自己的大数据实用技能。

Hadoop是一个开源框架,它允许使用简单的编程模型跨计算机集群对大型数据集进行分布式处理。Hive是一种数据仓库软件,它提供了一个类似于SQL的接口,可以有效地查询和操作与Hadoop集成的各种数据库和文件系统中的大型数据集。开源的Apache Spark是一个基于速度、易用性和分析功能构建的处理引擎,它为用户提供了存储和使用大数据的新方法。

如果你想了解更多课程信息,请在评论区留言。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

moocsino

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值