NOI / 2.1基本算法之枚举-8760:Cantor表

本文介绍了Georg Cantor证明有理数可枚举的数学原理,并通过一个Z字形排列的示例,展示了如何通过算法找到第N个有理数。程序代码展示了如何实现这一过程,对于理解数学中的枚举概念和算法设计具有指导意义。
摘要由CSDN通过智能技术生成

总时间限制: 

1000ms

内存限制: 

65536kB

描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

给定N,求第N项。

输入

一个整数N(1≤N≤10000000)。

输出

一个分数,即表中的第N项。

样例输入

7

样例输出

1/4

来源

NOIP1999复赛 普及组 第一题

 参考代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n,i,j,h=1,t=0;//H,T要给初值
	cin>>n;
	while(1)//条件永远为真
	{
		for(i=1,j=h;i<=h&&j>=1;i++,j--)
		{
			t++;
			if(t==n)
			{
				if(h%2==1)
				cout<<j<<"/"<<i;
				else
				cout<<i<<"/"<<j;
				return 0;//直接结束程序
			}
		}
		h++;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

兔子递归

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值