机器学习开源库(Mark)

今天给大家介绍一下经典的开源机器学习软件:

编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matlab差,功能组合更为强大,个人认为,当然R和java也不错.

1.机器学习开源软件网(收录了各种机器学习的各种编程语言学术与商业的开源软件)

http://mloss.org

2 偶尔找到的机器学习资源网:(也非常全,1和2基本收录了所有ML的经典开源软件了)

http://www.dmoz.org/Computers/Artificial_Intelligence/Machine_Learning/Software/

3 libsvm (支持向量机界最牛的,不用多说了,台湾大学的林教授的杰作)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

4 WEKA (基于java的机器学习算法最全面最易用的开源软件)

http://www.cs.waikato.ac.nz/ml/weka/

5 scikit (本人最喜欢的一个基于python的机器学习软件,代码写得非常好,而且官方的文档非常全,所有都有例子,算法也齐全,开发也活跃
,强烈推荐给大家用)

http://scikit-learn.org/stable/

6 OpenCv(最牛的开源计算机视觉库了,前途无可限量,做图像处理与模式识别的一定要用,总不能整天抱着matlab做实验和工业界脱节吧,但是有一定难度)

http://opencv.willowgarage.com/wiki/

7 Orange (基于c++和python接口的机器学习软件,界面漂亮,调用方便,可以同时学习C++和python,还有可视化的功能,)

http://orange.biolab.si/

8 Mallet (基于JAVA实现的机器学习库,主要用于自然语言处理方面,特色是马尔可夫模型和随机域做得好,可和WEKA互补)

http://mallet.cs.umass.edu/

9 NLTK(PYTHON的自然处理开源库,非常易用,也强大,还有几本orelly的经典教程)

http://nltk.org/

10 lucene(基于java的包括nutch,solr,hadoop,mahout等全套,是做信息检索和搜索引擎的同志们必学的开源软件了,学JAVA的必学)

http://lucene.apache.org/

Additional:

1.pyml(a python module for machine learning,支持svm/knn/k-means==)

http://mlpy.sourceforge.net/

2.mahout(阿帕奇基金下项目,其主要是可以与hadoop进行天然结合,从而并行运行,在鲁棒性方面很好)

http://mahout.apache.org/

3.milk(python的机器学习工具包,主要是针对监督学习,包括svm/knn/决策树)

http://pypi.python.org/pypi/milk/

4.Octave(Andrew NG课上推荐使用的,类似matlab)

http://www.gnu.org/software/octave/

机器学习涵盖了许多不同的算法,用于解决各种类型的问题。以下是一些常见的机器学习算法: 监督学习算法:线性回归(Linear Regression)逻辑回归(Logistic Regression)决策树(Decision Trees)随机森林(Random Forests)支持向量机(Support Vector Machines)朴素贝叶斯(Naive Bayes)K近邻算法(K-Nearest Neighbors)深度学习(Deep Learning)算法,如神经网络(Neural Networks) 无监督学习算法:K均值聚类(K-Means Clustering)层次聚类(Hierarchical Clustering)高斯混合模型(Gaussian Mixture Models)主成分分析(Principal Component Analysis,PCA)关联规则学习(Association Rule Learning) 这只是机器学习领域中的一小部分算法,还有许多其他的算法和技术。根据问题的性质和数据的特点,选择适合的算法是非常重要的。不同的算法有不同的假设和适用场景,因此在学习和应用机器学习算法时,需要综合考虑问题的需求和数据的特点。机器学习(Machine learning)是人工智能的子集,是实现人工智能的一种途径,但并不是唯一的途径。它是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。大概在上世纪80年代开始蓬勃发展,诞生了一大批数学统计相关的机器学习模型。 深度学习(Deep learning)是机器学习的子集,灵感来自人脑,由人工神经网络(ANN)组成,它模仿人脑中存在的相似结构。在深度学习中,学习是通过相互关联的「神经元」的一个深层的、多层的「网络」来进行的。「深度」一词通常指的是神经网络中隐藏层的数量。大概在2012年以后爆炸式增长,广泛应用在很多的场景中。机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构,使之不断改善自身。 从实践的意义上来说,机器学习是在大数据的支撑下,通过各种算法让机器对数据进行深层次的统计分析以进行「自学」,使得人工智能系统获得了归纳推理和决策能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值