老电脑也要玩tensorflow,解决AVX、SEE、SEE2等报错之路

本文介绍了如何在老旧的宏碁5750g电脑上运行TensorFlow,解决遇到的AVX、SSE、SSE2等指令集不支持的问题。通过卸载并重新安装特定版本的TensorFlow(如tf1.5),成功在不支持AVX2的CPU上运行神经网络。虽然速度较慢,但避免了报错。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用宏碁5750g来跑mnist手写识别的神经网络,真的是慢。

我原来的配置是i5,2g内存,gt540m,用显卡跑是没希望了,后来升级为i7 2760qm和6g内存。

刚开始跑的时候说我的电脑可以用AVX,于是有了这篇文章。

 

本文适合显卡不高、windows系统的电脑

参考: https://blog.csdn.net/wlwlomo/article/details/82806118

首先先卸载原来的tensorflow,用的是anaconda的python3.6.7环境下装的。

使用命令activate激活你的tensorflow环境,

再使用命令pip uninstall tensorflow即可。失败可试试用管理员权限,刚开始我是失败了。

接下来在 https://github.com/fo40225/tensorflow-windows-wheel 查找适合自己电脑的包,

你可以上百度看看自己cpu能支持什么指令,像我的cpu支持AVX,连AVX2都不支持。。。

最后安装了tf1.5版本,成功解决问题

 

 

顺便,最好选择版本高一点的tf。我镜像选了清华,清华上的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值