组合数学(实时更新)

1. 盒子放小球问题

n n n个小球, m m m个盒子。

1.1 n个小球有区别,m个盒子有区别

(1)允许空盒:每个球放到任意盒子里,总方案数 m n m^n mn
(2)不允许空盒:需满足 n ≥ m ≥ 1 n \geq m\geq 1 nm1 m > n m>n m>n时无解。其方案数及时看成m个盒子相同时的方案数,再乘以 m ! m! m!。答案即是 S ( n , m ) ∗ m ! S(n,m)*m! S(n,m)m!。S代表第二类斯特林数。

1.2 n个小球有区别,m个盒子无区别

(1)允许空盒:假设放了k个盒, m ≥ k ≥ 1 m\geq k\geq 1 mk1。那么答案就是 ∑ k = 1 m S ( n , k ) \sum_{k=1}^{m}S(n,k) k=1mS(n,k)
(2)不允许有空盒: S ( n , m ) S(n,m) S(n,m)

1.3 n个小球无区别,m个盒子有区别

(1)允许空盒: n ≥ m ≥ 1 n\geq m\geq 1 nm1。“隔板法”。假设不允许有空盒,每一个盒里都先放一个小球,这样小球共有 n + m n+m n+m个,然后插板,插板的方案数为 C n + m − 1 n − 1 C^{n-1}_{n+m-1} Cn+m1n1
(2)不允许空盒: n ≥ m ≥ 1 n\geq m\geq 1 nm1。“隔板法”。方案数 C n − 1 m − 1 C^{m-1}_{n-1} Cn1m1

1.4 n个小球无区别,m个盒子无区别

(1)允许空盒:划分数问题。 d p [ i ] [ j ] dp[i][j] dp[i][j]表示i个球,j个盒子的方案数。转移方程为
d p [ i ] [ j ] = d p [ i − j ] [ j ] + d p [ i ] [ j − 1 ] ( i ≥ j ) dp[i][j]=dp[i-j][j]+dp[i][j-1] (i\geq j) dp[i][j]=dp[ij][j]+dp[i][j1](ij)
d p [ i ] [ j ] = d p [ i ] [ j − 1 ] ( i < j ) dp[i][j]=dp[i][j-1] (i< j) dp[i][j]=dp[i][j1](i<j)
如果 n < m n<m n<m,答案为 d p [ n ] [ n ] dp[n][n] dp[n][n],否则为 d p [ n ] [ m ] dp[n][m] dp[n][m]
(2)不允许空盒: n ≥ m ≥ 1 n\geq m\geq 1 nm1。转成上情况的 n − m n-m nm个小球, m m m个盒子。

2. 计数原理与计数公式

2.1 可重复的排列与组合
2.1.1 可重复的排列

从n个不同元素中取m个元素(同一元素可以重复取出),按照一定的顺序排成一列。排列的个数为 n m n^m nm

2.1.2 可重复的组合

从n个不同元素中取m个元素(同一元素可以重复取出),并成一组。组合的个数为 C n + m − 1 m C^{m}_{n+m-1} Cn+m1m
【证明】
1 , 2 , . . . , n 1,2,...,n 1,2,...,n表示n个不同元素。从中取m个可以表示成:
{ i 1 , i 2 , . . . , i m } ( 1 ≤ i 1 ≤ i 2 ≤ . . . ≤ i m ≤ n ) \{i_1,i_2,...,i_m\} (1\leq i_1\leq i_2 \leq ... \leq i_m \leq n) {i1,i2,...,im}(1i1i2...imn)
j k = i k + ( k − 1 ) j_k = i_k + (k-1) jk=ik+(k1),即:
j 1 = i 1 j 2 = i 2 + 1 j 3 = i 3 + 2 . . . j m = i m + ( m − 1 ) \begin{aligned}j_1 &= i_1\\ j_2 &= i_2+ 1\\ j_3 &= i_3 + 2\\ ...\\ j_m &=i_m+(m-1) \end{aligned} j1j2j3...jm=i1=i2+1=i3+2=im+(m1)
可以得到组合
{ j 1 , j 2 , . . . , j m } ( 1 ≤ j 1 < j 2 < . . . < j m ≤ n − m + 1 ) \{j_1,j_2,...,j_m\} (1\leq j_1< j_2 < ... <j_m \leq n-m+1) {j1,j2,...,jm}(1j1<j2<...<jmnm+1)
这样就相当于在 n + m − 1 n+m-1 n+m1个元素中取 m m m个不相同的元素,作为一组。
因此即是 C n + m − 1 m C_{n+m-1}^{m} Cn+m1m

2.1.3 不全相异元素的全排列

n个元素中,分别有 n 1 , n 2 , . . . , n k n_1,n_2,...,n_k n1,n2,...,nk个元素相同,且 n 1 + n 2 + . . . + n k = n n_1+n_2+...+n_k=n n1+n2+...+nk=n,则称这n个元素的全排列为不全相异元素的全排列,个数为
n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n_1!n_2!...n_k!} n1!n2!...nk!n!

2.1.4 多组组合

n个相异的元素分为 k ( k ≤ n ) k(k\leq n) k(kn)个按照一定顺序排列的组,其中第 i i i组有 n i n_i ni个元素 ( i = 1 , 2 , . . . , k ) ( n 1 + n 2 + . . . + n k = n ) (i=1,2,...,k)(n_1+n_2+...+n_k=n) (i=1,2,...,k)(n1+n2+...+nk=n)。不同的分组方法为
n ! n 1 ! n 2 ! . . . n k ! \frac{n!}{n_1!n_2!...n_k!} n1!n2!...nk!n!
【例】
n ( n ≥ 6 ) n(n\geq 6) n(n6)个选手中选3对选手参加双打,问共有多少种选法。
答案为(注意不考虑组的顺序
C n 6 ∗ 6 ! 2 ! ∗ 2 ! ∗ 2 ! 3 ! \frac{C_{n}^{6}*\frac{6!}{2!*2!*2!}}{3!} 3!Cn62!2!2!6!

2.2 相异元素的圆排列和项链数
2.2.1 圆排列

n个元素不分首尾排成一圈,成为n个相异元素的圆排列。排列的种数为 ( n − 1 ) ! (n-1)! (n1)!

2.2.2 项链数

将n粒不相同的珠子,穿成一副项链,得到的不同的项链数。
由于项链顺时针和逆时针都是相同的,所以个数即是圆排列的一半。
{ 1 , n = 1 或 n = 2 1 2 ∗ ( n − 1 ) ! , n ≥ 3 \left\{ \begin{aligned} &1,n = 1或n=2\\ &\frac{1}{2}*(n-1)!,n\geq3 \end{aligned} \right. 1,n=1n=221(n1)!,n3

2.3 错排问题

错排递推式。
D ( n ) D(n) D(n)代表 n n n个数的错排公式,则
D ( n ) = ( n − 1 ) ∗ [ D ( n − 1 ) + D ( n − 2 ) ] D(n) = (n-1)*[D(n-1)+D(n-2)] D(n)=(n1)[D(n1)+D(n2)]
错排公式
D ( n ) = n ! ( 1 − 1 1 ! + 1 2 ! − 1 3 ! + . . . + ( − 1 ) n n ! ) D(n) = n!(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{(-1)^n}{n!}) D(n)=n!(11!1+2!13!1+...+n!(1)n)

2.4 组合数常用公式

C n 2 = n ∗ ( n − 1 ) 2 C n 3 = n ∗ ( n − 1 ) ( n − 2 ) 6 C n m = C n − 1 m − 1 + C n − 1 m m ∗ C n m = n ∗ C n − 1 m − 1 C n 0 + C n 1 + . . . + C n n = 2 n 1 C n 1 + 2 C n 2 + . . . + n C n n = n 2 n − 1 1 2 C n 1 + 2 2 C n 2 + . . . + n 2 C n n = n ( n + 1 ) 2 n − 2 C n 1 1 − C n 2 2 + C n 3 3 + . . . + ( − 1 ) n − 1 C n n n = 1 + 1 2 + 1 3 + . . . + 1 n ( C n 0 ) 2 + ( C n 1 ) 2 + ( C n 2 ) 2 + . . . + ( C n n ) 2 = C 2 n n \begin{aligned} &C_{n}^{2} = \frac{n*(n-1)}{2}\\ &\\ &C_{n}^{3}=\frac{n*(n-1)(n-2)}{6}\\ &\\ &C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m}\\ &\\ &m*C_{n}^{m} = n*C_{n-1}^{m-1}\\ &\\ &C_n^0+C_n^1+...+C_n^n =2^n\\ &\\ &1C_n^1+2C_n^2+...+nC_n^n=n2^{n-1}\\ &\\ &1^2C_n^1+2^2C_n^2+...+n^2C_n^n=n(n+1)2^{n-2}\\ &\\ &\frac{C_n^1}{1}-\frac{C_n^2}{2}+\frac{C_n^3}{3}+...+(-1)^{n-1}\frac{C_n^n}{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\\ &\\ &(C_n^0)^2+(C_n^1)^2+(C_n^2)^2+...+(C_n^n)^2=C_{2n}^n\\ \end{aligned} Cn2=2n(n1)Cn3=6n(n1)(n2)Cnm=Cn1m1+Cn1mmCnm=nCn1m1Cn0+Cn1+...+Cnn=2n1Cn1+2Cn2+...+nCnn=n2n112Cn1+22Cn2+...+n2Cnn=n(n+1)2n21Cn12Cn2+3Cn3+...+(1)n1nCnn=1+21+31+...+n1(Cn0)2+(Cn1)2+(Cn2)2+...+(Cnn)2=C2nn
范德蒙恒等式:
∑ i = 0 k C n i C m k − i = C n + m k \sum_{i=0}^{k}C_n^iC_m^{k-i}=C_{n+m}^k i=0kCniCmki=Cn+mk

经验式(link https://www.cnblogs.com/qrsikno/p/10170523.html):
∑ i = 0 n C n i ∗ r i = ( r + 1 ) n ( 广 义 二 项 式 定 理 ) ∑ i = 0 n i ∗ C n i = n ∗ 2 n − 1 ∑ i = 0 n C i k = C n + 1 k + 1 ∑ i = 0 k C n + i i = C n + k + 1 k \begin{aligned} &\sum_{i=0}^{n}C_n^i*r^i=(r+1)^n(广义二项式定理)\\ &\\ &\sum_{i=0}^{n}i*C_n^i=n*2^{n-1}\\&\\ &\sum_{i=0}^{n}C_i^k=C_{n+1}^{k+1}\\&\\ &\sum_{i=0}^{k}C_{n+i}^i=C_{n+k+1}^{k}\\ \end{aligned} i=0nCniri=(r+1)n广i=0niCni=n2n1i=0nCik=Cn+1k+1i=0kCn+ii=Cn+k+1k

3. 抽屉原理与平均值原理

3.1 抽屉原理
3.1.1 第一抽屉原理

如果将m个物件放入n个抽屉内,那么必有一个抽屉内至少有 [ m − 1 n ] + 1 [\frac{m-1}{n}]+1 [nm1]+1个物件。
【推广】
如果将 m 1 + m 2 + . . . + m n + 1 m_1+m_2+...+m_n+1 m1+m2+...+mn+1个物件放入n个抽屉内,那么或者第一个抽屉内至少有 m 1 + 1 m_1+1 m1+1个物件,或者第二个抽屉内至少有 m 2 + 1 m_2+1 m2+1个物件……或者第n个抽屉内至少有 m n + 1 m_n+1 mn+1个物件。

3.1.2 第二抽屉原理

如果将m个物件放入n个抽屉内,那么必有一个抽屉内至多有 [ m n ] [\frac{m}{n}] [nm]个物件。
【推广】
如果将 m 1 + m 2 + . . . + m n − 1 m_1+m_2+...+m_n-1 m1+m2+...+mn1个物件放入n个抽屉内,那么或者第一个抽屉内至多有 m 1 − 1 m_1-1 m11个物件,或者第二个抽屉内至多有 m 2 − 1 m_2-1 m21个物件……或者第n个抽屉内至多有 m n − 1 m_n-1 mn1个物件。

3.2 平均值原理

(1)设 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是实数, A = 1 n ( a 1 + a 2 + . . . + a n ) A =\frac{1}{n}(a_1+a_2+...+a_n) A=n1(a1+a2+...+an),则 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an中必有一个数不小于A,也有一个数不大于A。
(2)设 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是实数, G = 1 n a 1 a 2 . . . a n n G =\frac{1}{n}\sqrt[n]{a_1a_2...a_n} G=n1na1a2...an ,则 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an中必有一个数不小于G,也有一个数不大于G。

4. 生成函数

生成函数的定义:
实数序列 a 0 , a 1 , . . . , a k , . . . a_0,a_1,...,a_k,... a0,a1,...,ak,...的生成函数是无穷级数
G ( x ) = a 0 + a 2 x + . . . + a k x k + . . . = ∑ k = 0 ∞ a k x k G(x)=a_0+a_2x+...+a_kx^k+...=\sum_{k=0}^{\infty}a_kx^k G(x)=a0+a2x+...+akxk+...=k=0akxk
a k {a_k} ak的普通生成函数。
广义二项式系数:
( u k ) = { u ( u − 1 ) ( u − 2 ) . . . ( u − k + 1 ) / k ! , k > 0 1 , k = 0 \dbinom{u}{k}=\left \{ \begin{aligned}&u(u-1)(u-2)...(u-k+1)/k!,&k>0\\ &1,&k=0 \end{aligned}\right. (ku)={u(u1)(u2)...(uk+1)/k!,1,k>0k=0
【例】
( 1 / 2 3 ) = ( 1 / 2 ) ( 1 / 2 − 1 ) ( 1 / 2 − 2 ) 3 ! = ( 1 / 2 ) ( − 1 / 2 ) ( − 3 / 2 ) 6 = 1 / 16 \begin{aligned}\dbinom{1/2}{3}&=\frac{(1/2)(1/2-1)(1/2-2)}{3!}\\ &=\frac{(1/2)(-1/2)(-3/2)}{6}\\ &=1/16 \end{aligned} (31/2)=3!(1/2)(1/21)(1/22)=6(1/2)(1/2)(3/2)=1/16
x x x是实数, ∣ x ∣ < 1 |x|<1 x<1 u u u是实数,那么
( 1 + x ) u = ∑ k = 0 ∞ ( u k ) x k (1+x)^u=\sum_{k=0}^{\infty}\dbinom{u}{k}x^k (1+x)u=k=0(ku)xk

4.1 常用生成函数

1 − x n + 1 1 − x = ∑ k = 0 n x k 1 1 − a x = ∑ k = 0 ∞ a k x k 1 ( 1 − x ) 2 = ∑ k = 0 ∞ ( k + 1 ) x k 1 ( 1 − x ) n = ∑ k = 0 ∞ C n + k − 1 k x k 1 ( 1 + x ) n = ∑ k = 0 ∞ C n + k − 1 k ( − 1 ) k x k \begin{aligned} &\frac{1-x^{n+1}}{1-x}=\sum_{k=0}^{n}x^k\\ &\\ &\frac{1}{1-ax}=\sum_{k=0}^{\infty}a^kx^k\\ &\\ &\frac{1}{(1-x)^2}=\sum_{k=0}^{\infty}(k+1)x^k\\ &\\ &\frac{1}{(1-x)^n}=\sum_{k=0}^{\infty}C_{n+k-1}^{k}x^k\\ &\\ &\frac{1}{(1+x)^n}=\sum_{k=0}^{\infty}C_{n+k-1}^{k}(-1)^kx^k\\ \end{aligned} 1x1xn+1=k=0nxk1ax1=k=0akxk(1x)21=k=0(k+1)xk(1x)n1=k=0Cn+k1kxk(1+x)n1=k=0Cn+k1k(1)kxk

4.2 计数问题

5. 特殊计数序列

5.1 Catalan数列

前几项: 1 , 1 , 2 , 5 , 14 , 42 , 132 , 429 , 1430 , 4862 , 16796 , 58786 , 208012 , . . . . . . 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, ...... 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...... c [ 0 ] = 1 , c [ 1 ] = 1 , c [ 2 ] = 2... c[0]=1,c[1]=1,c[2]=2... c[0]=1,c[1]=1,c[2]=2...

递 推 式 1 : f [ n ] = ∑ i = 0 n − 1 f [ i ] ∗ f [ n − i − 1 ] 递 推 式 2 : f [ n ] = 4 n − 2 n + 1 f [ n − 1 ] 组 合 式 1 : f [ n ] = C 2 n n n + 1 组 合 式 2 : f [ n ] = C 2 n n − C 2 n n − 1 \begin{aligned} &递推式1:f[n]=\sum_{i=0}^{n-1}f[i]*f[n-i-1]\\ &\\ &递推式2:f[n]=\frac{4n-2}{n+1}f[n-1]\\ &\\ &组合式1:f[n]=\frac{C_{2n}^{n}}{n+1}\\ &\\ &组合式2:f[n] = C_{2n}^{n}-C_{2n}^{n-1} \end{aligned} 1f[n]=i=0n1f[i]f[ni1]2f[n]=n+14n2f[n1]1f[n]=n+1C2nn2f[n]=C2nnC2nn1

应用:

  1. 二叉树计数1:已知二叉树有 n n n个节点,能够构成 C n C_{n} Cn种不同的二叉树。(二叉搜索树)
  2. 二叉树计数2:已知二叉树的叶子 n n n个,能够构成 C n − 1 C_{n-1} Cn1种不同的二叉树。(二叉搜索树)
  3. 括号匹配数:一个合法的表达式由()包围,()可以嵌套和连接,给出 n n n对括号,可以组成的合法表达式的个数为 C n C_{n} Cn
  4. 划分问题:将一个凸 n + 2 n+2 n+2多边形区域分成三角形区域的方法数为 C n C_{n} Cn
  5. 出栈问题1:一个栈的进栈序列为 1 , 2 , 3 , . . n 1,2,3,..n 1,2,3,..n,不同的出栈序列有 C n C_{n} Cn种。
  6. 出栈问题2:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少种方法使得只要有10元的人买票,售票处就有5元的钞票找零。5元的相当于入栈,10元的相当于出栈,转化成上问题。
  7. 路径问题:在 n ∗ n n*n nn的方格地图中,从一个角到另外一个角,不跨越对角线的路径数有 C n C_{n} Cn种。
  8. 握手问题: 2 n 2n 2n个人均匀坐在一个圆桌边上,某个时刻所有人同时与另一个人握手,要求手之间不能交叉,共有 C n C_{n} Cn种握手方法。
5.2 Fibonacci数列

通项公式: F n = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] F_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n] Fn=5 1[(21+5 )n(215 )n]
递推式:
F n = F n − 1 + F n − 2 F_n=F_{n-1}+F_{n-2} Fn=Fn1+Fn2
性质:
F 1 + F 1 + F 2 + F 3 + . . . + F n = F n + 2 − 1 F 1 + 2 F 2 + 3 F 3 + . . . + n F n = n F n + 2 − F n + 3 + 2 F 1 + F 3 + F 5 + . . . + F 2 n − 1 = F 2 n F 2 + F 4 + F 6 + . . . + F 2 n = F 2 n + 1 − 1 F 1 2 + F 2 2 + F 3 2 + . . . + F n 2 = F n F n + 1 F n − 1 F n + 1 − F n 2 = ( − 1 ) n \begin{aligned}&F_1+F_1+F_2+F_3+...+F_n=F_{n+2}-1\\ &\\ &F_1+2F_2+3F_3+...+nF_n=nF_{n+2}-F_{n+3}+2\\ &\\ &F_1+F_3+F_5+...+F_{2n-1}=F_{2n}\\ &\\ &F_2+F_4+F_6+...+F_{2n}=F_{2n+1}-1\\ &\\ &F_1^2+F_2^2+F_3^2+...+F_n^2=F_nF_{n+1}\\ &\\ &F_{n-1}F_{n+1}-F_n^2=(-1)^n \end{aligned} F1+F1+F2+F3+...+Fn=Fn+21F1+2F2+3F3+...+nFn=nFn+2Fn+3+2F1+F3+F5+...+F2n1=F2nF2+F4+F6+...+F2n=F2n+11F12+F22+F32+...+Fn2=FnFn+1Fn1Fn+1Fn2=(1)n

定理:
F n F m + F m − 1 F n − 1 = F m + n − 1 F m F n + 1 + F m − 1 F n = F m + n m = n 时 , F 2 n − 1 = F n 2 + F n − 1 2 F 2 n = ( F n − 1 + F n + 1 ) F n = ( 2 F n − 1 + F n ) F n F n 整 除 F m 当 且 仅 当 n 整 除 m , 其 中 n ≥ 3 任 意 连 续 三 个 F i b o n a c c i 数 两 两 互 素 。 \begin{aligned} &F_nF_m+F_{m-1}F_{n-1}=F_{m+n-1}\\ &\\ &F_mF_{n+1}+F_{m-1}F_n=F_{m+n}\\ &\\ &m=n时,\\ &F_{2n-1}=F_n^2+F_{n-1}^2\\ &\\ &F_{2n}=(F_{n-1}+F_{n+1})F_n=(2F_{n-1}+F_n)F_n\\ &\\ &F_n整除F_m当且仅当n整除m,其中n\geq3\\ &\\ &任意连续三个Fibonacci数两两互素。 \end{aligned} FnFm+Fm1Fn1=Fm+n1FmFn+1+Fm1Fn=Fm+nm=nF2n1=Fn2+Fn12F2n=(Fn1+Fn+1)Fn=(2Fn1+Fn)FnFnFmnmn3Fibonacci

5.3 Lucas数列

定义:
L n = { 2 , n = 1 1 , n = 2 L n − 1 + L n − 2 , n ≥ 3 L_n= \left\{\begin{aligned}&2,&n=1\\ &1,&n=2\\ &L_{n-1}+L_{n-2},&n\geq3 \end{aligned} \right. Ln=2,1,Ln1+Ln2,n=1n=2n3
通项公式:
L n = ( 1 + 5 2 ) n + ( 1 − 5 2 ) n L_n=(\frac{1+\sqrt{5}}{2})^n+(\frac{1-\sqrt{5}}{2})^n Ln=(21+5 )n+(215 )n
与Fibonacci数的关系:
F 2 n = L n F n L n = F n − 1 + F n + 1 F n = L n − 1 + L n + 1 5 L n 2 = 5 F n 2 + 4 ( − 1 ) n \begin{aligned} &F_{2n}=L_nF_n\\ &\\ &L_n=F_{n-1}+F_{n+1}\\ &\\ &F_n=\frac{L_{n-1}+L_{n+1}}{5}\\ &\\ &L_n^2=5F_n^2+4(-1)^n \end{aligned} F2n=LnFnLn=Fn1+Fn+1Fn=5Ln1+Ln+1Ln2=5Fn2+4(1)n

5.4 Stirling数
5.4.1 第一类Stirling数

S 1 ( n , m ) S1(n,m) S1(n,m)表示的是将 n n n个不同元素构成 m m m个圆排列的数目。
递推式:
S 1 ( n , m ) = ( n − 1 ) ∗ S 1 ( n − 1 , m ) + S 1 ( n − 1 , m − 1 ) ( n > 1 , m > 1 ) S1(n,m)=(n-1)*S1(n-1,m)+S1(n-1,m-1)(n>1,m>1) S1(n,m)=(n1)S1(n1,m)+S1(n1,m1)(n>1,m>1)

边界条件:
S 1 ( 0 , 0 ) = 1 , S 1 ( n , 0 ) = 0 S 1 ( n , n ) = 1 \begin{aligned} &S1(0,0)=1,S1(n,0) = 0\\ &S1(n,n) = 1 \end{aligned} S1(0,0)=1,S1(n,0)=0S1(n,n)=1
性质:
∑ k = 0 n S 1 ( n , k ) = n ! \sum_{k=0}^{n}S1(n,k)=n! k=0nS1(n,k)=n!
【例】 n n n个仓库, 2 n 2n 2n把钥匙, n n n 位官员。如果把 n n n位官员分成 m m m个不同的部,部中的官员数量与管理的仓库数量一致。有多少种方案使得所有同部的官员可以打开所有本部管理的仓库,而无法打开其他管理的仓库。( n n n把钥匙放到仓库, n n n把钥匙分给官员)
方案数即为 S 1 ( n , m ) n ! S1(n,m)n! S1(n,m)n!
前面的是放到仓库里的方案数,后面说官员的分配方案。

5.4.2 第二类Stirling数

S 2 ( n , m ) S2(n,m) S2(n,m)表示的是把 n n n个不同元素划分到 m m m个集合的方案数。
递推式:
S 2 ( n , m ) = m ∗ S 2 ( n − 1 , m ) + S 2 ( n − 1 , m − 1 ) ( 1 ≤ m ≤ n − 1 ) S2(n,m)=m*S2(n-1,m)+S2(n-1,m-1)(1\leq m\leq n-1) S2(n,m)=mS2(n1,m)+S2(n1,m1)(1mn1)
边界条件:
S 2 ( n , 0 ) = 0 , S 2 ( n , 1 ) = 1 S 2 ( n , n ) = 1 \begin{aligned} &S2(n,0)=0,S2(n,1)=1\\ &S2(n,n)=1 \end{aligned} S2(n,0)=0,S2(n,1)=1S2(n,n)=1

5.5 Bernoulli数

6. Polya计数

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值