AI赋能行业-1-从制造业说起

1.1 政策引导&技术进步

工信部于2024年12月明确提出2025年实施“人工智能+制造”行动计划,重点推进通用大模型与行业大模型的研发及场景应用,目标是实现制造业向智能化、高效化、绿色化转型。目前,深化大数据、人工智能等创新应用,开展“AI+”行动,已写入今年的《政府工作报告》,“AI+制造业”受到业界重点关注,将会为推动制造业行业数智化注入新动能。

当前AI技术在一定的范围内日趋成熟,从实验室创新到规模化应用的步伐也越来越快。随着2024年生成式人工智能(AIGC)产品的爆发,根据《生成式人工智能服务已备案信息》的数据显示,截至2024年11月,中国已有309个生成式AI产品完成备案。这一现象不仅表明了市场对生成式人工智能的迫切需求,也为行业大模型的发展奠定了基础。

其中,

1、大模型技术:从通用到垂直的深度适配。

通用大模型已具备自然语言交互与多模态生成能力,为制造业提供基础技术支持。

2、多模态融合与工程化落地。

视觉+语音+文本协同赋能;检索增强生成技术结合工业知识库,大幅度解决大模型“幻觉”问题。

因此不难看出,在企业应用中,AI技术可以提供如下价值:

1、提升效率与降低成本:

AI技术通过自动化和智能化手段,显著提升企业的运营效率,降低人力成本。自动化流程可以减少人工干预,智能分析系统可以快速处理大量数据,提高决策效率。这些技术的应用,使得企业能够在竞争激烈的市场中保持领先地位。

2、优化用户体验与个性化服务:

AI技术能够通过数据分析和用户行为预测,提供个性化的服务和产品推荐,从而优化用户体验。例如,智能推荐系统可以根据用户的偏好和历史行为,推荐最符合其需求的产品或服务,提升用户满意度和忠诚度。

3、推动创新与业务转型:

AI技术为企业提供了新的创新机会,推动业务转型和升级。通过AI技术,企业可以开发新的产品和服务,进入新的市场领域。同时,AI技术还可以帮助企业优化现有业务流程,提高运营效率,从而实现业务的全面转型。

4、数据驱动决策的潜力:

AI技术通过大数据分析和机器学习,能够提供更准确和实时的决策支持。例如,预测分析可以帮助企业预测市场趋势,优化供应链管理;智能监控系统可以实时监测生产过程中的异常,及时采取措施。这些技术的应用,使得企业能够做出更科学和有效的决策。

1.2 应用案例

AI技术能做什么,如何重塑企业的业务模式和创新路径?

1、 知识图谱构建,自动寻找逻辑和维护结构化的实体和关系。

2、 多模态交互,视觉、听觉、文字等多感官混合感知

3、 NLP自然语言处理,理解并生成

4、 智能体技术,交互协作、自主思考、调用工具

5、 光学字符识别OCR,将文档或图片转换成可编辑、搜索的数据

6、 数据采集,自动收集各渠道数据,助力分析与决策

7、 计算机视觉,是机器能够像人眼一样,从“看见”到“看懂”

8、 RPA,流程自动化,自动执行重复的业务流程及任务

AI技术应用方向,下面列举三个方向

1、工业智能化与自动化

•   生产流程优化与预测性维护

•   数据管理与知识图谱构建

2、智能交互与客户服务

•   多模态智能交互

•   AI客服与自动化服务

3、内容生成与设计

•   个性化内容生成

•   设计创新与跨模态生成

AI技术应用案例

1、工业文档与智能决策:

•   西门子与微软合作的Teamcenter应用,通过语音指令生成维护报告并自动分发给相关部门,减少人工操作复杂度

•   海尔卡奥斯以“大连接、大数据、大模型”为主线构建的卡奥斯工业互联网平台,深度赋能工业场景,实现对工业领域的群体智能决策。

2、质量控制与智能检测:

•   保时捷的汽车喷漆工厂在检测通道中,AI摄像头对喷漆表面进行检查,以立即进行补救。

•   华为基于工业AI质 检能力,提炼 800+工业级图像处理算子,为汽车、烟草、电子等制造行业客户打造工业AI视觉 质检平台,助力持续提质降本增效。

3、产品设计与生产加速

•   生成式设计优化:联发科正利用AI驱动的Cadence工具设计2nm芯片,效率提升30%

•   中国一汽红旗九章平台灵犀座舱与DeepSeek完成深度融合,目前灵犀座舱已实现语音闲聊和文生图大模型的量产应用。

4、参数优化与工艺改进

•   宝马汽车公司在喷漆工艺中以另一种方式使用AI:对喷漆装配线进行整体工艺分析。他们利用人工智能预测工厂内粉尘水平的增加,而粉尘水平的增加会根据温度和季节模式对喷漆质量产生负面影响。

以上案例来源:

人工智能赋能新型工业化典型应用案例名单,https://www.ncsti.gov.cn/kjdt/tzgg/202501/P020250102472111103210.pdf

国外制造业+AI:https://www.arrow.com/zh-cn/research-and-events/articles/how-ai-is-changing-manufacturing

国内AI+制造业及行业应用案例,https://www.sohu.com/a/754812092_121709768

汽车行业:​​http://jl.people.com.cn/n2/2025/0306/c349771-41155695.html​​

1.3 制造业全链数智化

关于制造业,AI有哪些应用场景?

通过融入语音识别、语音分析、OCR图文识别、大语言模型等技术,AI技术提供的智能体,可以服务于制造企业全业务流程:市场,营销,合同,采购,生产,财务,资产,人事,文档库,客服等等

在这些应用场景的辅助下,相信诸位不难看出,智能应用几乎可以全方位辅助制造业企业及员工降本增效。

从营销阶段、合同管理、项目管理,到采购、生产、售后服务,以及知识管理、行政,财务。实现全链智能化。

1.4 拥抱AI应用落地

企业拥抱AI,应用落地,何去何从?选择各自为战,还是统一工具,亦或是依托企业IM。各有优势,各有烦恼。

1、各自为战,深入垂直领域,但缺乏统一管控

2、依托统一工具,已管控,自建应用结合业务需投入人力、时间

3、依托企业IM,管道串联业务,自建智能体

以上个文章系列提到的Fiz-EIM为例,

IM是对传统系统持续赋能,通过企业协作平台不仅可以通过低代码平台快速构建新的企业应用,还可以对接企业现有系统,通过开放平台快速接入,给传统系统提供业务过程管理,数据完整性存储,业务消息快速送达,AI智能体快速接入能力。

单看Fiz-EIM的AI应用,几大方向也可覆盖制造行业的主要应用需求。

1.5 数据安全考量

制造业企业在落地AI应用时,必须全面考虑数据安全,以确保系统安全、合规和高效运行。

​数据安全

  1. 促进产业升级:数据安全是数字化转型的基石,确保制造业实现智能化和自动化。
  2. 维护竞争优势:保护专有数据,防止工业间谍行为,保持技术领先。
  3. 遵守法律法规:如数据安全法等,避免法律风险和罚款。

技术措施

  1. 数据加密:使用AES、RSA等算法加密数据,确保传输和存储的安全。
  2. 访问控制:实施RBAC,限制人员访问,减少内部威胁。
  3. 数据备份:定期备份,确保数据可恢复,防止灾难性损失。

4.  AI模型安全:防止模型被窃取或逆向工程,保护IP

管理方式

  1. 数据分类:按敏感度分类,高级数据加密、低级数据不加密。
  2. 安全政策:制定明确的安全标准和流程,确保员工遵守。
  3. 员工培训:定期培训,提升安全意识和技能。
  4. 定期评审:检查疏漏,及时修复。

环境&工具

  1. 云服务选择:选择合规云服务提供商,遵守数据存储法规。
  2. 边缘计算:在本地处理数据,减少云依赖,降低风险。
  3. 开源工具:选择可靠工具,避免恶意软件。
  4. 设备安全:定期更新系统,防止设备被入侵。​

1.6 小结

制造业数智化转型的路还有很长,但道路的目标已经决定,企业需要结合自身的实际需求,选择合适的方式从“新”向前,提“质”而行 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

moongoblin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值