
机器学习
文章平均质量分 88
mooyuan天天
网络安全领域
展开
-
机器学习笔记:fast style transfer原理
Fast Style Transfer(快速风格迁移)是一种能够快速将一幅图像的风格应用到另一幅图像上的技术,其核心原理是通过卷积神经网络(CNN)将艺术作品的风格特征与内容图像的结构信息分离并重组。风格提取与表示:利用预训练的卷积神经网络(如 VGG 网络)来提取图像的特征。在 VGG 网络中,不同层的特征图对图像的不同层次信息进行编码,浅层特征图包含图像的细节信息,如边缘、颜色等,而深层特征图则更多地捕捉图像的语义和高级结构信息。通过这些特征图,可以将图像的内容和风格分别进行表示。原创 2022-04-16 11:14:27 · 1905 阅读 · 0 评论 -
机器学习笔记:训练集、验证集与测试集
在学习《深度学习原理与pythorch实战》这本书的4.3.4划分数据集这一小节(即76页划分数据集)的过程中,提到了训练集、测试集与验证集这几个概念,以及为何相对于通用的训练集、测试集,多了一个验证集的概念。不过这本书讲解还是没有那么透彻清晰,基于此查了很多资料,又加深巩固理解了训练集、测试集合验证集的概念。一、定义Ripley, B.D在《Pattern Recognition and Neural Networks》(1996)中给出了这三个词的定义。Training set: A set原创 2022-03-17 12:51:08 · 43060 阅读 · 5 评论