
Pandas 系列教程
文章平均质量分 80
Pandas 是 Python 生态中用于数据处理与分析的核心库,它通过 DataFrame 和 Series 数据结构,实现了高效的数据操作、清洗、统计和可视化功能。支持多种数据源,简化复杂数据分析流程,是现代数据科学和机器学习工作中不可或缺的工具。
MoRanzhi1203
振翅图南者,绝非华花郎
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
1. Pandas 环境配置与快速上手
本文介绍 Pandas 的基本概念与安装方法,讲解环境配置技巧,包括显示设置和精度控制,并阐述 Pandas 与 NumPy 的关系。通过实例创建第一个 DataFrame,帮助初学者快速上手数据分析,为后续深入使用 Pandas 打下基础。原创 2025-09-29 02:32:56 · 546 阅读 · 0 评论 -
2. Pandas 核心数据结构:Series 与 DataFrame
本文深入讲解 Pandas 的核心数据结构:Series 和 DataFrame。通过创建、索引和切片示例,展示数据操作的基本方法。重点介绍行列访问方式(loc 与 iloc)的使用,为后续数据清洗与分析打下基础,让初学者快速掌握 Pandas 数据处理核心技巧。原创 2025-09-29 02:35:13 · 523 阅读 · 0 评论 -
3. Pandas 文件读写与数据导入导出
本文介绍 Pandas 中的文件读写与数据导入导出方法,包括 CSV、Excel 和 JSON 等常见格式。详细讲解读取文件的参数、保存数据的方法,以及处理常见文件读写问题的技巧。通过示例演示如何快速将外部数据导入 Pandas,并将处理结果导出保存,为数据分析工作提供完整流程支持。原创 2025-09-30 00:31:04 · 849 阅读 · 0 评论 -
4. Pandas 数据选择、查询与修改
在数据分析过程中,数据选择与修改是最常见、最基础的操作之一。无论是从庞大的数据集中筛选出所需部分,还是对列进行新增、修改、删除,这些操作都直接影响后续的数据清洗与分析效率。本文将详细介绍 条件过滤、布尔索引、多条件查询 以及 新增、修改、删除列 的方法,并通过实例演示,帮助你快速掌握 Pandas 的核心数据处理技巧。原创 2025-10-02 22:46:41 · 357 阅读 · 0 评论 -
5. Pandas 缺失值与异常值处理
在数据分析中,缺失值与异常值是常见问题。如果不处理,可能导致分析结果偏差或模型性能下降。本篇文章系统介绍 Pandas 中缺失值与异常值的检查与处理方法,包括检测、删除、填充以及简单的异常值处理技巧,为数据清洗和建模提供可靠基础。原创 2025-10-03 22:39:14 · 486 阅读 · 0 评论 -
6. Pandas 数据排序与排名
在数据分析中,排序与排名是基础而关键的操作。Pandas 提供了高效方法,包括按列或索引排序 (sort_values、sort_index) 以及数值排名 (rank)。掌握这些操作可以快速提取关键信息、生成报表、判断趋势。本文通过实例演示常用排序与排名技巧。原创 2025-10-03 22:55:59 · 297 阅读 · 0 评论 -
7. Pandas 字符串与类别数据处理
本文将介绍 Pandas 中字符串与类别数据的处理方法,涵盖字符串操作(大小写转换、替换、分割、匹配与查找等)以及类别变量的类型转换与优化。通过示例展示如何在 数据清洗、统计分析与特征工程 中高效处理文本和离散型数据,为后续建模与可视化打下基础。原创 2025-10-04 23:16:44 · 346 阅读 · 0 评论 -
8. Pandas 日期与时间序列数据处理
时间序列数据广泛应用于 金融交易、销售分析、交通流量、气象研究 等领域。Pandas 提供了强大的日期与时间处理能力,包括日期类型转换、日期属性提取、时间索引设置、重采样与滚动计算等功能。本文通过实例演示这些操作,帮助你快速掌握时间序列分析的基础技能。原创 2025-10-04 23:31:36 · 371 阅读 · 0 评论 -
9. Pandas 数据统计与汇总分析
在数据分析的早期阶段,我们往往需要快速了解数据的整体特征,例如:均值、方差、频次分布、变量之间的相关性等。 Pandas 提供了丰富而高效的统计与汇总分析函数,可以帮助我们从原始数据中提炼出核心信息,为后续的建模与决策提供依据。本文将系统讲解这些方法的使用与意义。原创 2025-10-05 22:22:15 · 364 阅读 · 0 评论 -
10. Pandas 分组与聚合分析(groupby)
在数据分析中,我们常常需要对数据进行分类统计、汇总计算或分组比较,例如:按地区计算销售额、按部门求平均工资、或根据多条件筛选群体特征等。 在 Pandas 中,`groupby` 是实现这些操作的核心工具。它能够高效地将数据按一个或多个条件分组,再进行聚合、变换或筛选,是探索性分析与报表生成中不可或缺的利器。原创 2025-10-05 22:59:37 · 169 阅读 · 0 评论