HDU 5780 (欧拉函数)

题目链接:点击这里

题意: 求 na=1nb=1gcd(xa1,xb1) .

因为 gcd(xa1,xb1)=xgcd(a,b)1 , 然后就是计算所有的 gcd(a,b) 的值对答案的贡献, 最后减去 n2 个1. 如果用 f[i] 表示区间 [1,i] 中有多少对数互质, 那么 gcd(a,b)=i 的对数就是 f[1,n/i] . 答案就是 ni=1xif[n/i] . f数组就是一个欧拉函数的前缀和一样的东西. 然后这样单组的复杂度是O(n). 因为在一定范围内 f[n/i] 的值是不变的, 所以可以像莫比乌斯反演用到的分段加速一样分段计算, 段内就是一个等比数列, 这样单组复杂度就是O( nlgn )了.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <set>
using namespace std;
#define maxn 1000005
#define INF 1e18
#define mod 1000000007

bool vis[maxn];
int phi[maxn], prime[maxn], cnt;
long long sum[maxn];//[1,n]中有多少对数互质
int fac[maxn];//每一个数的一个素因子
int n, x;
long long f[maxn];//逆元

void init () {
    f[1] = 1;
    for (int i = 2; i <= 1000000; i++){
        f[i] = (long long)(mod - mod/i) * f[mod % i] % mod;
    } 
    cnt = 0;
    memset (vis, 0, sizeof vis);
    phi[1] = 1;
    for (int i = 2; i < maxn; i++) {
        if (!vis[i]) {
            prime[cnt++] = i;
            fac[i] = i;
            phi[i] = i-1;
        }
        for (int j = 0; j < cnt; j++) {
            if (1LL*i*prime[j] >= maxn) break;
            vis[i*prime[j]] = 1;
            fac[i*prime[j]] = prime[j];
            if (i%prime[j] == 0) {
                phi[i*prime[j]] = phi[i] * prime[j];
                break;
            }
            else {
                phi[i*prime[j]] = phi[i] * (prime[j]-1);
            }
        }
    }
    sum[1] = 1;
    for (int i = 2; i < maxn; i++) {
        sum[i] = sum[i-1];
        sum[i] = (sum[i-1] + 1LL*phi[i]*2) % mod;
    }
}

long long qpow (long long a, long long b) {
    if (b == 0)
        return 1;
    long long ans = qpow (a, b>>1);
    ans = ans*ans % mod;
    if (b&1)
        ans = ans*a%mod;
    return ans;
}

long long solve () {
    long long tmp = 1;
    long long ans = 0;
    int j;
    for (int i = 1; i <= n; i = j+1) {
        tmp *= x; tmp %= mod;
        j = (n/(n/i));
        long long gg =  qpow (x, j-i+1);
        ans += tmp * (gg+mod-1) % mod * sum[n/i] % mod * f[x-1] % mod;
        tmp = tmp * gg % mod * f[x] % mod;
        ans %= mod;
    }
    ans -= 1LL*n*n;
    ans = (ans % mod + mod) % mod;
    return ans;
}

int main () {
    init ();
    int t;
    scanf ("%d", &t);
    while (t--) {
        scanf ("%d%d", &x, &n);
        printf ("%lld\n", solve ());
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值