题目链接:点击这里
参考自这里
题意:给出一个网格图,要把奇数和偶数连起来,然后所有剩下的空格子连城若干个环(两个点可以重复走构成一个环)。已知每一对格子之间连边的花费,求最小费用。
把每一个格子拆成入点和出点,然后这样建模:
1. S到奇数入点建边,流量为1费用为0;
2. 偶数出点到T建边,流量为1费用为0;
3. S到空点入点建边,空点出点到T建边,流量为1费用为0;
4. 每一个点的入点到上下左右的点的出点建边,流量为1费用为连边费用。
这样跑一次费用流判断是否满流即可。因为这样的最大流必然是空格子参与某一条奇偶路径或者环。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <stack>
#include <vector>
#include <queue>
using namespace std;
#define maxn 5005
#define maxm 1000005
#define type long long
#define INF 1e15
int n, m;
int s, t;
struct node {
int u, v, next;
type cap, flow, cost;
}edge[maxm];
int head[maxn], cnt;
int pre[maxn];
type dis[maxn];
bool vis[maxn];
int N;
void init () {
memset (head, -1, (n*m*2+5)*sizeof head[0]);
cnt = 0;
}
void add_edge (int u, int v, type cap, type cost) {
edge[cnt].u = u, edge[cnt].v = v, edge[cnt].cap = cap, edge[cnt].flow = 0;
edge[cnt].cost = cost, edge[cnt].next = head[u], head[u] = cnt++;
edge[cnt].u = v, edge[cnt].v = u, edge[cnt].cap = 0, edge[cnt].flow = 0;
edge[cnt].cost = -cost, edge[cnt].next = head[v], head[v] = cnt++;
}
bool spfa (int s, int t) {
queue <int> q;
for (int i = 0; i < N; i++) {
dis[i] = INF;
vis[i] = 0;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = 1;
q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
vis[u] = 0;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].v;
if (edge[i].cap > edge[i].flow && dis[v] > dis[u]+edge[i].cost) {
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if (!vis[v]) {
vis[v] = 1;
q.push (v);
}
}
}
}
if (pre[t] == -1)
return 0;
else
return 1;
}
int MCMF (int s, int t, type &cost) {
type flow = 0;
cost = 0;
while (spfa (s, t)) {
type Min = INF;
for (int i = pre[t]; i != -1; i = pre[edge[i^1].v]) {
if (Min > edge[i].cap-edge[i].flow) {
Min = edge[i].cap-edge[i].flow;
}
}
for (int i = pre[t]; i != -1; i = pre[edge[i^1].v]) {
edge[i].flow += Min;
edge[i^1].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
}
int get (int x, int y) {
return x*m+y;
}
int getint () {
bool s=0;
int a,f;
while(a=getchar(),!(a>='0'&&a<='9')&&a!='-');
if(a-'-')
a-='0';
else
a=0,s=1;
while(f=getchar(),f>='0'&&f<='9')
a=a*10+f-'0';
return s ? -a:a;
}
int main () {
int tt, kase = 0, maxflow;
scanf ("%d", &tt);
while (tt--) {
printf ("Case #%d: ", ++kase);
n = getint (), m = getint ();
maxflow = 0;
init ();
N = 2*n*m+2, s = N-2, t = N-1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
int num;
num = getint ();
if (!num) {
add_edge (s, get (i, j), 1, 0);
add_edge (get (i, j)+n*m, t, 1, 0);
maxflow++;
}
else if (num&1) {
add_edge (s, get (i, j), 1, 0);
maxflow++;
}
else {
add_edge (get (i, j)+n*m, t, 1, 0);
}
}
}
for (int i = 0; i < n-1; i++) {
for (int j = 0; j < m; j++) {
int num; num = getint ();
add_edge (get (i, j), get (i+1, j)+n*m, 1, num);
add_edge (get (i+1, j), get (i, j)+n*m, 1, num);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m-1; j++) {
int num; num = getint ();
add_edge (get (i, j), get (i, j+1)+n*m, 1, num);
add_edge (get (i, j+1), get (i, j)+n*m, 1, num);
}
}
long long cost;
int res;
res = MCMF (s, t, cost);
if (res != maxflow) {
puts ("-1");
}
else
printf ("%lld\n", cost);
}
return 0;
}