codeforces 731D (水前缀)

题目链接:点击这里

题意:给出n个串,一共有c中字母编号为1-c。然后描述每一个串。每一次可以使得所有串的所有字母编号+1(编号为c的变成1).问最少多少次吼能够使得所有的串按照字典序递增。

考虑归并两堆字母,如果第一堆字母在 [l1,r1] 次数范围内有序,第二堆字母在 [l2,r2] 次数范围内有序,那么只需要考虑使得前一堆字母的尾和后一堆字母的头有序的范围,然后和前面两个区间交一下即可。这个交可以用一个前缀来维护。
(傻逼的用了分治,其实直接暴力计算连续两个之间的次数区间即可)。

#include <bits/stdc++.h>
using namespace std;
#define maxn 500005

int n, m;
vector <int> a[maxn];
int cnt[maxn];
int tot;

int c[1000005];
bool flag;
void add (int l, int r) {
    if (l > r) return ;
    c[l]++, c[r+1]--;
}

void solve (int x, int y) { 
    if (x == y) {
        tot++;
        add (0, m);
        return ;
    }
    int mid = (x+y)>>1;
    solve (x, mid);
    solve (mid+1, y);
    int sz1 = a[mid].size (), sz2 = a[mid+1].size ();
    tot++;
    for (int i = 0; i < min (sz1, sz2); i++) {
        if (a[mid][i] == a[mid+1][i]) continue;
        int num1 = a[mid][i], num2 = a[mid+1][i];
        if (num1 < num2) {
            add (0, m-num2);
            add (m-num1+1, m);
            return ;
        }
        else {
            add (m-num1+1, m-num2);
            return ;
        }
    }
    if (sz1 <= sz2) add (0, m);
}

int main () {
    //freopen ("more.in", "r", stdin);
    ios::sync_with_stdio(0);
    cin >> n >> m;
    tot = 0;
    memset (c, 0, sizeof c);
    flag = 1;
    for (int i = 1; i <= n; i++) {
        a[i].clear ();
        cin >> cnt[i];
        for (int j = 0; j < cnt[i]; j++) {
            int tmp; cin >> tmp;
            a[i].push_back (tmp);
        }
    }
    solve (1, n);
    int sum = 0;
    if (flag) {
        for (int i = 0; i <= m; i++) {
            sum += c[i];
            if (sum == tot) {
                sum = i;
                goto out;
            }
        }
        flag = 0;
    }
    out: ;
    if (!flag) cout << -1 << endl;
    else
        cout << sum << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值