2020杭电多校训练(第五、六场)

第五场

1001.Tetrahedron

标签:数学、结论

结论题。设直角四面体一点到底面3个顶点距离分别为a、b、c,顶点到底面高为h,则有 1 h 2 = 1 a 2 + 1 b 2 + 1 c 2 \frac{1}{h^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2} h21=a21+b21+c21

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=6e6+5,MOD=998244353;

int T,n,m;

int A[N],sum[N],inv[N];

int qpower(int x,ll p)
{
    int res=1;
    for (int base=x;p;p>>=1,base=(1ll*base*base)%MOD)
        if (p&1==1) res=(1ll*res*base)%MOD;
    return res;
}

ll ans;
int main()
{
    for (int i=1;i<=N-5;i++)
    {
        inv[i]=qpower(i,MOD-2);
        A[i]=qpower((1ll*i*i)%MOD,MOD-2);
        sum[i]=(sum[i-1]+A[i])%MOD;
    }
    cin>>T;
    while(T--)
    {
        scanf("%d",&n);
        printf("%d\n",((1ll*sum[n]*3)%MOD*inv[n])%MOD);
    }
    return 0;
}

1009.Paperfolding

标签:数学
上下折k下,左右折n-k下的方案数为 C n k C_n^k Cnk,剪下来的片数为 ( 2 k + 1 ) ( 2 n − k + 1 ) (2^k+1)(2^{n-k}+1) (2k+1)(2nk+1)

所以 s u m = ∑ k = 0 n C n k ( 2 k + 1 ) ( 2 n − k + 1 ) = ∑ k = 0 n C n k ( 2 n + 2 k + 2 n − k + 1 ) = 2 n 2 n + 2 n + 2 ∑ k = 0 n C n k 2 k sum=\sum_{k=0}^{n}C_n^k(2^k+1)(2^{n-k}+1)=\sum_{k=0}^{n} C_n^k(2^n+2^k+2^{n-k}+1)=2^n2^n+2^n+2\sum_{k=0}^{n}C_n^k2^k sum=k=0nCnk(2k+1)(2nk+1)=k=0nCnk(2n+2k+2nk+1)=2n2n+2n+2k=0nCnk2k

(最后一项 ∑ k = 0 n C n k 2 k = 3 n \sum_{k=0}^{n}C_n^k2^k=3^n k=0nCnk2k=3n)

除去总方案数 2 n 2^n 2n得到期望 e x p = 2 n + 1 + 3 n 2 n − 1 exp=2^n+1+\frac{3^n}{2^{n-1}} exp=2n+1+2n13n

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=1e5+5,MOD=998244353;

int T,m;

ll n;
int inv2;

int qpower(int x,ll p)
{
    int res=1;
    for (int base=x;p;p>>=1,base=(1ll*base*base)%MOD)
        if (p&1==1) res=(1ll*res*base)%MOD;
    return res;
}

ll ans;
int main()
{
    cin>>T;
    inv2=qpower(2,MOD-2);
    while(T--)
    {
        scanf("%lld",&n);
        if (n==0){
            printf("4\n");
            continue;
        }
        ans=0;
        ans+=qpower(2,n);
        ans+=1;
        ll temp=(1ll*qpower(3,n)*qpower(inv2,n-1))%MOD;
        ans=(ans+temp)%MOD;
        printf("%lld\n",ans);
    }
    return 0;
}

1003.Boring-Game

标签:模拟

模拟,一层一层把它翻下来。

起始状态可以视作一堆,每翻一层可以拆分成两个过程。

  1. 把当前状态每一堆一分为二,在上面的一段继承原来的编号,下面的一段编号乘2
  2. 把上面那段内部的值整体翻转,然后按照编号倒着放在左边

随便画一下就是
在这里插入图片描述
然后实现的话用A记录内部的翻转,B记录整体的编号情况(因为不能push_front所以先push_back然后再reverse,写的有点绕)。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=5e5+5,MOD=998244353;

int T,n,m,k;

int jc[20];

int A[N],ans[N];

vector<int>B;

void solve()
{
    cin>>n>>k;
    int tot=2*n*jc[k];
    for (int i=1;i<=tot;i++) A[i]=i;
    int len=tot/2;
    B.clear();
    B.push_back(1);
    for (int i=1;i<=k;i++)
    {
        for (int j=1;j<=tot;j+=len*2)
        {
            reverse(A+j,A+len+j);
        }
        len/=2;
    }
    for (int i=1;i<=k;i++)
    {
        for (int i=0;i<B.size();i++) B[i]*=2;
        for (int i=B.size()-1;i>=0;i--) B.push_back(B[i]-1);
    }
    reverse(B.begin(),B.end());
    for (int i=1;i<=tot;i++)
    {
        int x;
        scanf("%d",&x);
        ans[i]=x;
    }
    len*=2;
    for (int i=1;i<=n*2;i++)
        for (int j=1;j<=jc[k];j++)
        {

            printf("%d",ans[A[i+len*(B[j-1]-1)]]);
            if (i!=n*2 || j!=jc[k]) printf(" ");
        }
    printf("\n");
}
int main()
{
    cin>>T;
    jc[0]=1;
    for (int i=1;i<=15;i++) jc[i]=jc[i-1]*2;
    while(T--) solve();
    return 0;
}

1012.Set1

标签:找规律, 组合数,概率

这题我感觉题解可能稍微讲复杂了一点。。

对于当前的i,我们的目标是对于前i-1个数,每个数都能找到另一个对应的数,并且最终除了i之外每个数都能匹配上。这样一来每自动消去一个数,就选择删掉它对应的那个数,最终一定对应了一种合法方案。

首先当i<=n/2时,前i-1个数不能使后n-i个数都匹配,答案为0。

当i>n/2时,先固定住后n-i个数,用前i-1个数去匹配,一共有 P i − 1 n − i P_{i-1}^{n-i} Pi1ni种方案,对于剩下的 2 i − 1 − n 2i-1-n 2i1n个数再两两匹配并消除先后顺序,也就是 ( 2 i − 1 − n 2 , 2 , 2 , . . . ) × 1 ( 2 i − 1 − n 2 ) ! \binom{2i-1-n}{2,2,2,...}\times \frac{1}{(\frac{2i-1-n}{2})!} (2,2,2,...2i1n)×(22i1n)!1

乘起来计算一下就是 ( i − 1 ) ! 2 ( 2 i − 1 − n ) / 2 × ( 2 i − 1 − n 2 ) ! \frac{(i-1)!}{2^{(2i-1-n)/2}}\times (\frac{2i-1-n}{2})! 2(2i1n)/2(i1)!×(22i1n)!

最后再除以总方案数 ( n − 1 ) ! ! (n-1)!! (n1)!!

可以 O ( n ) O(n) O(n)线性计算

#include<bits/stdc++.h>
#define LL long long
using namespace std;

const int N=5e6+5,MOD=998244353;

int T,n,sjc[N],jc[N],inv[N];

int bin(int base,int p) {
	int res=1;
	for (;p;p>>=1,base=(1ll*base*base)%MOD) {
		if (p&1) res=(1ll*res*base)%MOD;
	}
	return res;
}

void init() {
	jc[0]=jc[1]=sjc[0]=sjc[1]=inv[1]=1;
	for (int i=2;i<=N-5;i++) {
		sjc[i]=(1ll*sjc[i-2]*i)%MOD;
		jc[i]=(1ll*jc[i-1]*i)%MOD;
		inv[i]=1ll*(MOD-MOD/i)*inv[MOD%i]%MOD;
	}
}
void solve() {
	cin>>n;
	int ans;
	for (int i=1;i<=n;i++) {
		if (i<=n/2) {
			printf("0%c",i==n?'\n':' ');
			continue;
		}
		if (i==n/2+1) ans=1ll*jc[i-1]*bin(bin(2,(2*i-1-n)/2),MOD-2)%MOD*bin(sjc[n-1],MOD-2)%MOD;
		else ans=1ll*ans*(i-1)%MOD*inv[2]%MOD*inv[(2*i-1-n)/2]%MOD;
		printf("%d%c",ans,i==n?'\n':' ');
	}
}
int main() {
	init();
	cin>>T;
	while(T--) solve();
	return 0;
}

1007.Tree

标签:树形dp

用dp[n][0]表示对于当前子树根n,任何子结点度数都小于等于k的最大权值(n当前度数最多为k-1)。
用dp[n][1]表示对于当前子树根n,存在结点度数大于k时的最大权值。

定义好之后转移起来就不是很麻烦了。
dp[n][0]为子树中最大的k-1个dp[x][0] (x为子树根)
dp[n][1]要么为所有子树的dp[x][0],要么为k-2个dp[x][0]+1个dp[x][1]权值最大的方案。

然后还需要特判一种情况,就是当前的n向下连了k棵子树并不再向上连边。判断方法和dp[n][1]的求法类似。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pii;

const int N=2e5+5;

struct Edge{
    int to;
    ll v;
};

vector<Edge>G[N];

vector<pii>ve[N];

ll ans;

int T,n,m,k;

ll dp[N][2];

void dfs(int x,int f) {
    if (G[x].size()==1 && f!=-1) return;
    for (auto now:G[x]){
        int to=now.to,v=now.v;
        if (to==f) continue;
        dfs(to,x);
        ve[x].push_back({dp[to][0]+v,dp[to][1]+v});
    }
    sort(ve[x].begin(),ve[x].end(),[&](pii a,pii b){return a.first>b.first;});
    ll sum1=0,sum2=0,sum3=0,mx1=0,mx2=0;
    for (int i=0;i<ve[x].size();i++){
        if (i<k-1) sum1+=ve[x][i].first;
        sum2+=ve[x][i].first;
        if (i<k-1) mx1=max(mx1,ve[x][i].second-ve[x][i].first);
        if (i>=k-1 && k>=2) mx1=max(mx1,ve[x][i].second-ve[x][k-2].first);
    }
    if (ve[x].size()>=k) {
        for (int i=0;i<ve[x].size();i++){
            if (i<k) mx2=max(mx2,ve[x][i].second-ve[x][i].first);
            if (i>=k) mx2=max(mx2,ve[x][i].second-ve[x][k-1].first);
        }
        sum3=sum1+ve[x][k-1].first;
        ans=max(ans,sum3+mx2);
    }
    dp[x][0]=max(dp[x][0],sum1);
    dp[x][1]=max(dp[x][1],sum2);
    dp[x][1]=max(dp[x][1],sum1+mx1);
    ans=max(ans,dp[x][0]);
    ans=max(ans,dp[x][1]);
}

void solve() {
    scanf("%d%d",&n,&k);
    for (int i=1;i<=n;i++) {
        G[i].clear();
        ve[i].clear();
    }
    for (int i=1;i<=n-1;i++) {
        int u,v; ll w;
        scanf("%d%d%lld",&u,&v,&w);
        G[u].push_back({v,w});
        G[v].push_back({u,w});
    }
    if (k==0) {
        printf("0\n");
        return;
    }
    ans=0;
    for (int i=1;i<=n;i++) dp[i][0]=dp[i][1]=0;
    dfs(1,-1);
    printf("%lld\n",ans);
}

int main() {
    cin>>T;
    while(T--) solve();
    return 0;
}

第六场

1006.A-Very-Easy-Graph-Problem

标签:并查集,树形dp

思考关键点是按照边给出的顺序,如果当前的两个点本来就是连通的,那么这条边肯定不起作用,直接忽略。如果这两个点不连通,就连一条边。判断联通可以用并查集实现。

最后肯定连成一棵树,然后树形dp,记录每颗子树0和1的个数,以及所有0和1到达子树根节点的路径长就可以dp转移了。

还有一种做法就是枚举边,记录每条边两侧0和1的数量,得到这条边被经过的次数,次数×权值计算贡献。

#include<bits/stdc++.h>
#define debug(x) cerr<<#x<<" : "<<x<<endl;
using namespace std;

const int N=2e5+5,MOD=1e9+7;

int T,n,m,tmp;

int fa[N],a[N];

long long cnt[N][2],sum[N][2],ans;

struct Edge{
    int to,v;
};
vector<Edge>G[N];

int getfa(int x) {
    if (fa[x]==x) return x;
    else return fa[x]=getfa(fa[x]);
}

void init() {
    ans=0;
    for (int i=1;i<=n;i++) {
        G[i].clear();
        fa[i]=i;
        cnt[i][0]=cnt[i][1]=0;
        sum[i][0]=sum[i][1]=0;
    }
}

void dfs(int x,int f) {
    if (G[x].size()==1 && ~f) {
        cnt[x][a[x]]++;
        return;
    }
    for (auto t:G[x]){
        int to=t.to,v=t.v;
        if (to==f) continue;
        dfs(to,x);
        cnt[x][0]+=cnt[to][0];cnt[x][1]+=cnt[to][1];
        cnt[x][0]%=MOD;cnt[x][1]%=MOD;
        sum[x][0]=(sum[x][0]+sum[to][0]+1ll*v*cnt[to][0])%MOD;
        sum[x][1]=(sum[x][1]+sum[to][1]+1ll*v*cnt[to][1])%MOD;
    }
    for (auto t:G[x]){
        int to=t.to,v=t.v;
        if (to==f) continue;
        ans=(ans+(cnt[x][0]-cnt[to][0]+MOD)%MOD*cnt[to][1]*v)%MOD;
        ans=(ans+(cnt[x][1]-cnt[to][1]+MOD)%MOD*cnt[to][0]*v)%MOD;
        ans=(ans+(sum[to][0]*(cnt[x][1]-cnt[to][1]+MOD)%MOD))%MOD;
        ans=(ans+(sum[to][1]*(cnt[x][0]-cnt[to][0]+MOD)%MOD))%MOD;
        ans=(ans+1ll*cnt[to][1-a[x]]*v+sum[to][1-a[x]])%MOD;
    }
    cnt[x][a[x]]=(cnt[x][a[x]]+1)%MOD;
}

int main() {
    cin>>T;
    while(T--) {
        scanf("%d%d",&n,&m);
        init();
        for (int i=1;i<=n;i++) scanf("%d",&a[i]);
        tmp=2;
        for (int i=1;i<=m;i++) {
            int u,v;
            scanf("%d%d",&u,&v);
            if (getfa(u)!=getfa(v)){
                G[u].push_back({v,tmp});
                G[v].push_back({u,tmp});
                fa[getfa(v)]=getfa(u);
            }
            tmp=(1ll*tmp*2)%MOD;
        }
        dfs(1,-1);
        printf("%lld\n",ans);
    }
    return 0;
}

1010.Expectation

标签:位运算、生成树计数、计算行列式

把每一位拆开来分别计算贡献。

先把所有边都连上计算出生成树的总和tot,然后把当前位为1的边再建个图计算新图生成树的个数cnt,那么第i位对答案的贡献就为 1 < < ( i − 1 ) × c n t t o t 1<<(i-1)\times\frac{cnt}{tot} 1<<(i1)×totcnt

关键在于怎么计算生成树的个数。其实我也不会,临时去搜了个板子。

其实就是根据图构造一个行列式,满足
a i j = { d e g [ i ] i = = j − 1 i 、 j 之 间 存 在 一 条 边 0 i 、 j 之 间 没 有 边 a_{ij}=\begin{cases}deg[i] &i==j\\ -1&i、j之间存在一条边\\ 0&i、j之间没有边\end{cases} aij=deg[i]10i==jijij
然后去掉一个点的信息(比如这里去掉的是第n行第n列)之后算一下行列式的值就是生成树的个数了。

这题应该还需要考虑重边的情况,方法就是i、j之间每有一条边, a i j a_{ij} aij就减1。

#include<bits/stdc++.h>
#define debug(x) cerr<<#x<<" : "<<x<<endl;
#define LL long long
using namespace std;

const int MOD=998244353,MAXN=1e2+5;

LL a[MAXN][MAXN],ans;

int T,n,m,sign;

int M[MAXN][MAXN],M2[MAXN][MAXN];

int bin(int base,int p) {
    int res=1;
    for (;p;p>>=1,base=(1ll*base*base)%MOD)
        if (p&1) res=(1ll*res*base)%MOD;
    return res;
}

struct Edge{
    int u,v,w;
}e[10005];
LL solve(int N){
    sign = 0; LL ans = 1;
    for(int i=1; i<N; i++){
        for(int j=i+1; j<N; j++){//当前之后的每一行第一个数要转化成0
            int x=i, y=j;
            while( a[y][i] ){//利用gcd的方法,不停地进行辗转相除
                LL t = a[x][i] / a[y][i];
                for(int k=i; k<N; k++)
                    a[x][k] = (a[x][k] - a[y][k] * t) % MOD;
                swap(x, y);
            }
            if(x != i){//奇数次交换,则D=-D'整行交换
                for(int k=1; k<N; k++)
                    swap(a[i][k], a[x][k]);
                sign ^= 1;//行列式*-1
            }
        }
        if( !a[i][i] ){//斜对角中有一个0,则结果为0
            return 0;
        }
        else ans = ans * a[i][i] % MOD;
    }
    if(sign != 0) ans *= -1;
    if(ans < 0) ans += MOD;//
    return ans;
}

int main(){
    cin>>T;
    while(T--) {
        scanf("%d%d",&n,&m);
        memset(M,0,sizeof(M));
        for (int i=1;i<=m;i++) {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            e[i].u=u;e[i].v=v;e[i].w=w;
        }
        memset(a,0,sizeof(a));
        for (int k=1;k<=m;k++) {
            int i=e[k].u,j=e[k].v;
            a[i][i]++;a[j][j]++;
            a[i][j]--;a[j][i]--;
        }
        LL tot=solve(n);
        tot=bin(tot,MOD-2);
        ans=0;
        for (int i=0;i<=30;i++)
        {
            memset(M2,0,sizeof(M2));
            /*for (int j=1;j<=n;j++)
                for (int k=1;k<=n;k++)
                    M2[j][k]=M[j][k]&(1<<i);*/
            memset(a,0,sizeof(a));
            for (int p=1;p<=m;p++) {
                if (e[p].w&(1<<i)) {
                    int j=e[p].u,k=e[p].v;
                    a[j][j]++;a[k][k]++;
                    a[j][k]--;a[k][j]--;
                }
            }
            LL cur=solve(n);
            ans=(ans+(1ll*cur*tot)%MOD*(1<<i))%MOD;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

1005.Fragrant-numbers

标签:思维、dp

关键点:先打个表,然后就会发现只有3和7不能构造,其他5000内的所有数答案都在13位以内。然后就用集合dp[l][r]表示从l到r能组成的所有数(只记录5000以内的),那么dp[l][r]就为dp[l][mid]和dp[mid+1][r]中每个数任意组合之后的和或积了。

#include<bits/stdc++.h>
using namespace std;

const int N=20,M=5e3+5;

const string s=".11451419191145141919";

int T,n;

set<int>dp[N][N];

int ans[M];

int getNum(int l,int r) {
    int res=0;
    for (int i=l;i<=r;i++) {
        res=res*10+s[i]-'0';
    }
    return res;
}

void dfs(int l,int r) {
    if (l>r) return;
    if (dp[l][r].size()) return;
    if (r-l<4) {
        int x=getNum(l,r);
        if (x<=5000) dp[l][r].insert(x);
    }
    for (int i=l;i<r;i++) {
        dfs(l,i);dfs(i+1,r);
        for (int u:dp[l][i]) for (int v:dp[i+1][r]) {
            if (u+v<=5000) dp[l][r].insert(u+v);
            if (u*v<=5000) dp[l][r].insert(u*v);
        }
    }
}

int main() {
    memset(ans,-1,sizeof(ans));
    dfs(1,13);
    for (int i=1;i<=13;i++) for (int x:dp[1][i])
        if (ans[x]==-1) ans[x]=i;
    cin>>T;
    while(T--) {
        int x;
        scanf("%d",&x);
        printf("%d\n",ans[x]);
    }
    return 0;
}

1007.A-Very-Easy-Math-Problem

标签:莫比乌斯反演

我其实很想把这题一起补了,但是实在是没有接触过莫比乌斯反演之类的题目(确切说,突然发现自己对所有数论的知识都完全没什么接触 只会GCD)看了一天还是没搞出个所以然,只能暂时搁置先把其他题补了。尽快学一下数论的内容吧。。任务单+1

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值