machine learning
moses1994
Ghent CS 博士在读
展开
-
深度学习神经网络 随笔记
深度炼丹入坑许久,记录一些过程中遇到的问题,不定时更新。NO FREE LUNCH定理:如果不考虑具体问题,所有的算法都是随机猜测,没有好坏之分。1、训练数据集shuffle的作用在将训练数据送入网络之前,一般均会对数据集做shuffle,打乱数据之间的顺序,让数据随机化,这样可以避免过拟合。如果不shuffle,模型短期时间内可能会连续遇见到A类型样本,可能会出现过拟合,而另一段时间内又过拟合于B类型样本,忘记之前学习到的A样本,这样的模型泛化能力必然很差。那如果A和B样本一直交替,还会.原创 2020-05-20 15:09:14 · 332 阅读 · 0 评论 -
概念:监督学习、无监督学习与半监督学习
(此为机器学习随笔之一) 机器学习中的算法,主要有两种:监督学习;半监督学习。1 、名词监督学习 : supervised learning 无监督学习 : unsupervised learning 半监督学习 : semi-supervised learning2 、 概念监督学习:亦称监督训练、有教师学习。是利用已知类别的样本(即有标记的样本 labeled sample,已知其相应的类原创 2016-09-19 22:02:56 · 10958 阅读 · 0 评论 -
Python import theano 运行LSTM官方例子
LSTM网络进行情感分析本教程旨在 Theano 中实现 循环神经网络(RNN)的 长短时记忆模型(LSTM)。 在本教程中,此模型用于对来自电影评论大数据集(有时称为IMDB数据集)的电影评论执行情绪分析。在这个任务中,给定电影评论,模型尝试预测它是正面还是负面。 这是一个二进制分类任务。1、本文目的: win8.1 64bit 下 运行LSTM官方例子原创 2016-12-02 17:31:45 · 4980 阅读 · 0 评论 -
Anaconda Spyder下 Ipython console 画图
在终端窗口输出图片:In [1]: %matplotlib inline在图片窗口表现图片:In [2]: %matplotlib qt原创 2016-12-02 20:26:46 · 12187 阅读 · 2 评论 -
Yoshua Bengio——《Deep Learning》学习笔记1
版权声明:此为Yoshua Bengio的新书《Deep Learning》学习笔记,本文为博主在研究工作中经验分享,包括学习笔记、摘录、研究成果,以便以后工作参考之用,欢迎交流和批评;其中参考资料的标注难免会有疏漏之处,以及其它欠妥之处,如有请告知,立马更正,致歉,谢谢;未经博主允许不得转载。第一章 前言机器学习(machine learning): AI 系统需要具备自己获原创 2017-10-31 21:26:17 · 1250 阅读 · 0 评论