前言:
理解资源调优,说白了就是为spark程序提供合理的内存资源、cpu资源等。所以需要知道有哪些参数可以设置这些资源。
一、spark-submit脚本
–conf PROP=VALUE | 手动给sparkConf指定相关配置,比如–conf spark.serializer=org.apache.spark.serializer.KryoSerializer |
---|---|
–properties-file FILE | 如果配置项比较多,或者接收的配置是个文件,我们就可以使用这种文件 |
–driver-memory | driver程序内存大小,默认值1G |
–executor-memory | 每一个executor的内存大小,默认1G |
–driver-cores | 在standalone的cluster模式下面生效,driver的cpu core,因为在这种模式下面driver是有worker启动的,和executor一样在集群中运行。client模式下面driver不在spark集群中启动,也就不会占用spark集群的资源。 |
–total-executor-cores | 在standalone的生效,总的executor的cpu core的个数 |
–supervise | **在standalone的cluster模式下面生效,如果driver启动失败,会有spark集群负责重新启动。**driver ha的配置的两个必不可少的条件:–deploy-mode cluster、–supervise |
–executor-cores | 在standalone和yarn模式的生效,每一个executor的cpu core个数。total-executor-core/executor-cores=executor的个数 |
–num-executors |