spark性能调优(二)之资源调优

本文深入探讨Spark性能调优中的资源管理,包括num-executors、executor-memory、executor-cores、driver-memory、spark.default.parallelism、spark.storage.memoryFraction和spark.shuffle.memoryFraction等关键参数的详细说明及调优建议,旨在帮助优化Spark作业的运行效率。
摘要由CSDN通过智能技术生成

前言:
理解资源调优,说白了就是为spark程序提供合理的内存资源、cpu资源等。所以需要知道有哪些参数可以设置这些资源。

一、spark-submit脚本

–conf PROP=VALUE 手动给sparkConf指定相关配置,比如–conf spark.serializer=org.apache.spark.serializer.KryoSerializer
–properties-file FILE 如果配置项比较多,或者接收的配置是个文件,我们就可以使用这种文件
–driver-memory driver程序内存大小,默认值1G
–executor-memory 每一个executor的内存大小,默认1G
–driver-cores 在standalone的cluster模式下面生效,driver的cpu core,因为在这种模式下面driver是有worker启动的,和executor一样在集群中运行。client模式下面driver不在spark集群中启动,也就不会占用spark集群的资源。
–total-executor-cores 在standalone的生效,总的executor的cpu core的个数
–supervise **在standalone的cluster模式下面生效,如果driver启动失败,会有spark集群负责重新启动。**driver ha的配置的两个必不可少的条件:–deploy-mode cluster、–supervise
–executor-cores 在standalone和yarn模式的生效,每一个executor的cpu core个数。total-executor-core/executor-cores=executor的个数
–num-executors
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值