我在ACM竞赛中,一般负责决定队伍的下限:水题能不能清理出来……其他太高深的题目,我表示我还是挺无脑的,一般都不老会的……只有数据结构类题还是挺得心应手的……而个人心得体会最深刻的还是无脑的方法:个人称为根号N法……
主要思想就是将待操作的长度为N的区间分成大小为sqrt(N)的块,然后实现各种操作……
一些常用定义:
MAGIC:定义一个块的大小,如字面意思,一个莫名其妙的数字……
于是,我们把一段长度为N的区间,分成了若干长度为 MAGIC 的区间:[0,magic),[magic, 2magic)....
于是易得,i / MAGIC 就是点 i 所在块的编号,若 i % MAGIC == 0,则证明由点 i 开始是一个新区间
一般来讲,我们在预处理和修改的时候,维护两个信息,一个是序列,另一个是块
应用1:
静态RMQ问题,求一个长度为N的序列中区间 l,r 中的最大/小值
在读入序列的时候预处理得到每个块里的最大值
对一段区间l,r进行查询的时候,将其分成若干段 [l , magic * i) , [magic * i , magic * (i + 1)) ... [magic * j .. r],取最大值
其中左右两端需要暴力,然后中间的 [magic * i , magic * (i + 1)) ... 等区间,直接调用预处理的结果
预处理O(N),每个查询O(sqrt(N))
int
num[11111];
int
max[111];
int
MAGIC = 111;
int
n;
void
init() {
for
(
int
i = 0; i <n; i++) {
if
(i % MAGIC == 0 || num[i] > max[i / MAGIC]) {
max[i / MAGIC] = num[i];
}
}
}
int
query(
int
l,
int
r) {
int
ret = num[l];
for
(
int
j = l; j <= r;) {
if
(j % MAGIC == 0 && j + MAGIC - 1 <= r) {
if
(max[j / MAGIC] > ret) ret = max[j / MAGIC];
j += MAGIC;
}
else
{
if
(num[j] > ret) ret = num[j];
j += 1;
}
}
return
ret;
}
|
应用2:动态RMQ问题,在应用1的基础上增加条件:可以修改某点的值
修正某点的值,然后维护该点所在的块,复杂度O(sqrt(N))
void
update(
int
x,
int
delta) {
num[x] = delta;
int
l = x / MAGIC * MAGIC;
int
r = l + MAGIC;
for
(
int
i = l; i < r; i++) {
if
(i % MAGIC == 0 || num[i] > max[i / MAGIC]) max[i / MAGIC] = num[i];
}
}
|
其他应用:区间求和(静态,动态),区间染色,等等等等……To Be continued……如果题目时间卡的不是太紧,都可以用sqrt(N)大法水一水
精通线段树的同志们应该更有心得,这个方法相当于一层分根号N叉的一个线段树……似乎这个方法没有什么意义,不过这个方法各种意义上都是更加无脑,思维复杂度,编码复杂度都很低,而且随着现在机器越来越好,根号N的方法很难被卡住,还是值得一试的……
下面看看今天多校的题目:http://acm.hdu.edu.cn/showproblem.php?pid=4366
题意是给一个树,树上每个节点都有两个属性:忠诚度和能力,给出若干查询,求每个子树中能力 > 树根能力的点中,忠诚度最高的那个
首先容易想到DFS一趟,把问题转化为区间查询问题,相当于查找一段区间[L,R]里,能力 > X 的点中,忠诚度最高的点
于是决定用根号N法水一水:把区间分块:[0,MAGIC), [MAGIC, 2MAGIC....),并按照块内的节点能力值排序
然后应用个简单DP思想,O(MAGIC) 推出从块内每个点开始到块末尾的最大忠诚度是多少,这样一个块的信息就初始化完成了
查询的时候,如果待查询区间[l,R]和块相交,则直接暴力,如果[l,R]完全包含一个块,则在块里二分能力值X,然后返回块内能力值 > X 的最大忠诚度
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
#include <cstdio>
#include <vector>
#include <map>
#include <algorithm>
using
namespace
std;
typedef
long
long
Long;
const
int
MAGIC = 250;
struct
staff {
int
loyalty;
int
ability;
};
bool
operator < (staff a,staff b) {
return
a.ability < b.ability;
}
vector<
int
> adj[55555];
staff arr[55555];
int
pos[55555];
map<
int
,
int
> rev;
int
tot;
staff list[55555];
staff sorted[55555];
int
maxl[55555];
int
size[55555];
int
n,q;
int
dfs(
int
now) {
pos[now] = tot;
list[tot] = sorted[tot] = arr[now];
tot ++;
int
ret = 1;
for
(
int
i = 0; i < adj[now].size(); i++) {
ret += dfs(adj[now][i]);
}
return
size[pos[now]] = ret;
}
int
work(
int
l,
int
r,
int
val) {<br>
// 在块l,r内返回能力值 > val 的最大忠诚<br>// 二分区间端点判定
if
(sorted[r].ability <= val)
return
-1;
if
(sorted[l].ability > val)
return
maxl[l];
while
(l + 1 < r) {
int
mid = (l + r) >> 1;
if
(sorted[mid].ability > val) r = mid;
else
l = mid;
}
return
maxl[r];
}
int
main() {
int
nn;
scanf
(
"%d"
,&nn);
while
(nn--) {
scanf
(
"%d%d"
,&n,&q);
for
(
int
i = 0; i < n; i++) {
adj[i].clear();
arr[i].loyalty = arr[i].ability = -1;
sorted[i] = list[i] = arr[i];
}
memset
(maxl,0,
sizeof
(maxl));
memset
(size,0,
sizeof
(size));
memset
(pos,0,
sizeof
(pos));
rev.clear();
rev[-1] = -1;<br>
// 以上是初始化
for
(
int
i = 1; i < n; i++) {
int
fa,l,a;
scanf
(
"%d%d%d"
,&fa,&l,&a);
adj[fa].push_back(i);<br>
// 由于保证忠诚度不同,为了操作方便,map忠诚度到人
rev[arr[i].loyalty = l] = i;
arr[i].ability = a;
}
tot = 0;
dfs(0);<br>
// 以上是构图DFS
for
(
int
i = 0; i < n; i += MAGIC) {
int
j = i + MAGIC;
if
(j > n)
break
;<br>
// 块内排序
sort(sorted + i, sorted + j);<br>
// DP构造忠诚度
maxl[j - 1] = sorted[j - 1].loyalty;
for
(
int
k = j - 2; k >= i; k--) {
maxl[k] = maxl[k + 1] > sorted[k].loyalty ? maxl[k + 1] : sorted[k].loyalty;
}
}
while
(q--) {
int
st;
scanf
(
"%d"
,&st);
int
val = arr[st].ability;
st = pos[st];
int
ed = st + size[st] - 1;
int
ans = -1;
for
(
int
i = st; i <= ed;) {<br>
// 二分块
if
(i % MAGIC == 0 && i + MAGIC - 1 <= ed) {
int
tmp = work(i, i + MAGIC - 1, val);
if
(tmp > ans) ans = tmp;
i += MAGIC;
}
else
{<br>
// 暴力搞
if
(list[i].ability > val && list[i].loyalty > ans) ans = list[i].loyalty;
i ++;
}
}
printf
(
"%d\n"
,rev[ans]);
}1
}
return
0;
}
|
今天尝到甜头之后,试图把POJ2104也根号N大法了
题意是给一个序列,查询区间内的第K大值
我们同样分块,预处理,把块内元素排序。然后对每个查询,二分第K大值,设为X,对X,统计区间内有多少数小于X,如果区间包含块则二分,否则暴力。
这样复杂度为二分log(x) × max(块数 × log(MAGIC) + MAGIC × 2),经无数次调换MAGIC,以及应用了WS读入法,也过不了……
于是,咱们将分块方法优化一下,也弄点层次出来:设第 i 层块大小为 1 << i,初始化同理。
每次查询的时候,试图走最大的 2 的幂次的步长……
直接上代码似乎更容易明白:
#include <stdio.h>
#include <algorithm>
using namespace std;
const int MAGIC = 18;
int n,m;
int arr[111111];
int sorted[20][111111];
// 找出第ind层,区间为l,r的块中有多少数 < val
int work(int ind,int l,int r,int val) {
int *sorted = ::sorted[ind];
if (sorted[l] >= val) return 0;
if (sorted[r] < val) return r - l + 1;
int st = l;
while (l + 1 < r) {
int mid = (l + r) >> 1;
if (sorted[mid] < val) l = mid; else r = mid;
}
return r - st;
}
int main() {
scanf("%d%d",&n,&m);
for (int i = 0; i < n; i++) {
scanf("%d",arr + i);
}
for (int j = 0; j < MAGIC; j++) {
for (int i = 0; i < n; i++) {
sorted[j][i] = arr[i];
}
}// 预处理每层大小为 2,4,8,16... 的块
for (int j = 1; j < MAGIC; j++) {
int step = 1 << j;
for (int i = 0; i + step - 1 < n; i += step) {
sort(sorted[j] + i, sorted[j] + i + step);
}
}
while (m --) {
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
l --; r --;
int ll = -1e9 - 1;
int rr = 1e9 + 1;
while (ll + 1 < rr) {
int rank = 0;
int mid = (ll + rr) >> 1;
for (int i = l; i <= r;) {
for (int j = MAGIC; j >= 0; j--) { // 选择最大的2的幂次的步长,调用块里对应的信息
int step = 1 << j;
if (i % step == 0 && i + step - 1 <= r) {
rank += work(j,i, i + step - 1,mid);
i += step;
break;
}
}
}
if (rank < k) ll = mid; else rr = mid;
}
printf("%d\n",ll);
}
return 0;
}
这个复杂度的话,外层二分,log(N),每次会分log(N)块,块内二分Log(N),总复杂度Log(N)^3
在一个好的Blog上见过句话:定义若干正则集合,并将他们组织成某种合适的结构,而查找算法就是要把查找的结果表示成若干个正则集合的划分,进而在每个正则集合中通过枚举的方式实现查找。可见,分块,线段树等等都是这个思想