人工智能
mosquito_zm
这个作者很懒,什么都没留下…
展开
-
谱聚类(spectral clustering)原理总结
来源:https://www.cnblogs.com/pinard/p/6221564.html 谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的...转载 2018-05-02 02:44:30 · 401 阅读 · 0 评论 -
梯度下降(Gradient Descent)小结
来源:http://www.cnblogs.com/pinard/p/5970503.html 在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数...转载 2018-05-02 02:48:44 · 161 阅读 · 0 评论 -
奇异值分解(SVD)原理与在降维中的应用
来源:http://www.cnblogs.com/pinard/p/6251584.html 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用S...转载 2018-05-02 02:51:07 · 171 阅读 · 0 评论 -
从拉普拉斯矩阵说到谱聚类
从拉普拉斯矩阵说到谱聚类0 引言 11月1日上午,机器学习班 第7次课,邹讲聚类(PPT),其中的谱聚类引起了自己的兴趣,邹从最基本的概念:单位向量、两个向量的正交、方阵的特征值和特征向量,讲到相似度图、拉普拉斯矩阵,最后讲谱聚类的目标函数和其算法流程。 课后自己又琢磨了番谱聚类跟拉普拉斯矩阵,打算写篇博客记录学习心得, 若有不足或建议,欢迎随时不吝指出,thanks。1 矩阵基础...转载 2018-05-02 03:21:22 · 217 阅读 · 0 评论