机器学习知识图谱——Adaboost(自适应提升算法)

 目录

一、图解Adaboost(自适应提升算法)知识图谱

二、Adaboost 是什么?

三、Adaboost 的基本原理

四、Adaboost 的训练流程

五、Adaboost 的优点

六、Adaboost 的缺点

七、Adaboost 与其他方法的对比

八、应用场景

九、Python 示例代码(使用 sklearn)

十、可视化示意图


机器学习知识图谱——Adaboost(自适应提升算法)

一、图解Adaboost(自适应提升算法)知识图谱

这张图清晰地展示了Adaboost算法的核心思想:通过迭代训练一系列弱学习器,并根据它们的性能动态调整样本权重和弱学习器权重,最终将它们组合成一个强大的集成模型。这正是Boosting算法的精髓所在。

流程图的每个步骤如下:

1.训练数据(左侧蓝色框): 这是算法开始的基础,所有训练样本都从这里开始。

2.初始化权重(蓝色虚线框):

  • 首先,为每个训练样本初始化一个权重 W1。通常,在第一次迭代中,所有样本的权重都是相等的。

3.带权重的训练集(绿色框):

  • 根据当前的权重,创建一个带权重的训练集1。这意味着在训练过程中,每个样本的重要性会根据其权重进行调整。

4.弱学习器1(黄色框):

  • 使用带权重的训练集1来训练一个“弱学习器1”。弱学习器通常是一个简单的模型,例如决策树桩(depth-1 decision tree)。

  • 在训练过程中,会基于学习误差 e1 来更新弱学习器的权重系数 α1。

5.根据权重 α1 更新样本权重 W2(箭头指向 W2):

  • 弱学习器1的性能(误差 e1)会影响到下一个弱学习器的训练。具体来说,那些被弱学习器1错误分类的样本,其权重会被提高,而正确分类的样本权重会降低。这样,在训练下一个弱学习器时,它会更关注之前难以分类的样本。

6.重复上述过程(W2 到 Wn,以及弱学习器2到弱学习器n):

  • 这个过程会迭代进行多次。每次迭代都会根据上一个弱学习器的表现更新样本权重,并训练一个新的弱学习器。

  • 每个弱学习器 n 都会基于学习误差 en 更新其权重系数 αn。

7.结合策略(蓝色框):

  • 所有训练好的弱学习器(弱学习器1到弱学习器n)会通过一个“结合策略”组合起来。

  • 这个结合策略通常是加权投票,每个弱学习器的权重就是其对应的 α 值,表现好的弱学习器(误差小)会有更大的权重。

8.强学习器(最右侧蓝色框):

  • 最终,所有弱学习器的加权组合就形成了最终的“强学习器”。这个强学习器的预测能力通常远超任何一个单独的弱学习器。


二、Adaboost 是什么?

Adaboost 是一种集成学习方法,属于 Boosting 框架,通过组合多个弱分类器形成一个强分类器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

34号树洞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值