机器学习知识图谱——支持向量机算法(SVM)

 目录

一、图解支持向量机(SVM)知识图谱

二、SVM 是什么?

三、SVM 的核心思想

四、线性可分 SVM(线性分类)

五、软间隔 SVM(处理不可分)

六、非线性 SVM + 核函数

七、SVM 的预测机制

八、优缺点总结

九、SVM 应用场景

十、Python 示例代码(使用 sklearn)

延伸补充:常见问题解答


一、图解支持向量机(SVM)知识图谱

1.SVM的原理图(左侧):

  • 这张图展示了SVM如何在一个二维空间中进行分类。

  • 它有两类数据点,用紫色和蓝色表示。

  • 中间的实线代表了分类超平面(决策边界),其方程为 WTX+b=0。

  • 两条虚线表示支持向量所在的超平面,它们是 WTX+b=1 和 WTX+b=−1。这两条线之间的距离就是间隔(margin),SVM的目标是最大化这个间隔。

  • 靠近虚线的数据点被称为支持向量,它们是决定分类超平面的关键点。

2.SVM的结构图(右侧):

  • 这张图展示了SVM在使用核函数(Kernel Function)时的结构。

  • 最底层是输入特征 X1,X2,…,Xn。

  • 中间层是核函数 K(Xi,X) 的输出,它将原始特征映射到高维空间。这里 K(X1,X), K(X2,X), ..., K(Xn,X) 表示将每个支持向量 Xi 与输入 X 进行核函数计算。

  • 最顶层是输出 f(x),它通常是核函数输出的加权和(通过 Σ 符号表示),并最终决定分类结果。这表明了SVM在处理非线性分类问题时,通过核技巧将其转换为高维空间的线性分类问题。


二、SVM 是什么?

支持向量机是一种强大的监督学习算法,可用于分类回归问题,尤其擅长处理小样本、高维度、非线性问题

✅ 本质:在特征空间中,寻找一个最优超平面,使得不同类别的样本被分开,并且边界间隔最大化


三、SVM 的核心思想

最大间隔分类器(Margin Maximization)

  • 在所有可以分开样本的超平面中,选出那个离两类数据“最远”的超平面

  • 样本点中,离超平面最近的点称为支持向量

  • 理论依据:更大的间隔意味着更强的泛化能力。


四、线性可分 SVM&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

34号树洞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值