数据处理与Python代码分发:Auto Loader与Python Wheels的应用指南
1. Auto Loader的功能与应用
1.1 Auto Loader概述
Auto Loader是一种强大的工具,可使用cloudFile源在Azure Databricks中进行配置和运行。它适用于流式和批量ELT工作负载处理范式,当队列中没有文件需要处理时,集群会关闭;当新文件到达队列时,集群会重新启动。
1.2 高级模式演变能力
Auto Loader能够管理流式半结构化JSON数据的高级模式演变能力,这种现代流式架构模式在构建数据湖架构时非常有用,因为它支持将流写入Delta格式。
1.3 Auto Loader资源管理器
可以在Scala Databricks笔记本中以编程方式使用Auto Loader资源管理器,列出、过滤和删除Azure订阅中的Auto Loader资源。这有助于避免达到Azure事件网格的特定配额和限制,并能从Databricks笔记本中以编程方式高效管理Auto Loader资源。
1.4 COPY INTO命令对比
COPY INTO命令是将数据增量插入Delta表的另一种方法。对于数千个的低容量文件,COPY INTO是不错的选择;而对于数百万个或更多的高容量文件,从成本和性能角度来看,Auto Loader更具优势,因为它可以将处理拆分为多个批次。对于持续演变的模式,Auto Loader处理得更加优雅;对于重新加载和重新处理部分文件,COPY INTO更易于管理且性能更好,并且可以与Auto Loader流并发运行。Auto L
Auto Loader与Python Wheels应用指南
订阅专栏 解锁全文
16

被折叠的 条评论
为什么被折叠?



