常用的客观效果指标和测试方法

LCD 常用的客观效果指标和测试方法

1.DPI--精密度:

 

评分标准

DPI

评分

DPI<200

50

200≤DPI<250

60

250≤DPI<300

70

300≤DPI<350

80

350≤DPI<400

90

DPI≥400

100

 

Dpi是指单位面积内像素多少,也就是扫描精度,目前国际上都是计算一平方英寸面积内像素的多少. Dpi越小,扫描的清晰度越低

 

2.亮度:

 

评分标准

L

评分

L≤300

40

300≤L<350

50

350≤L<380

60

380≤L<420

70

420≤L<460

80

460≤L<500

90

L≥500

100

测试仪器CA310:

测试图片:全白图片

 

3、亮度均匀性

评分标准

U

评分

U≤75%

40

75%≤U<80%

50

80%≤U<85%

60

85%≤U<90%

80

U≥90%

100

 

需要用到的测试仪器:CA310:

测量方法:测试纯白图片九个点,最小亮度/最大亮度的比值。

 

4、对比度

评分标准

CR

评分

CR<400

40

400≤CR<500

50

500≤CR<600

60

600≤CR<800

70

800≤CR<1000

80

1000≤CR<1200

90

CR≥1200

100

测试仪器:CA310

测量方法:

 

5、色度(白点坐标)

评分标准

W(x,y)

评分

 (0.29~0.31) +/->0.040

0

(0.29~0.31) +/-0.040

40

(0.29~0.31) +/-0.035

50

(0.29~0.31) +/-0.030

60

(0.29~0.31) +/-0.025

70

(0.29~0.31) +/-0.020

80

(0.29~0.31) +/-0.015

90

(0.29~0.31) +/-0.01

100

 

 测试仪器CA310:

 测量方法:

 

6、Flicker

 

测试仪器:DT100/DT101

测试方法和图片如下:

 

 

 

7、视角

 

 

 

评分标准

视角

评分

V<40

40

40≤V<50

50

50≤V<60

60

60≤V<70

70

70≤V<80

80

V≥80

100

 

 

 测量仪器:MTK反馈了需要用到视角测试仪器:Autronic-Melcherss ConoScope

 由于上面的仪器较贵,MTK建议测试方法,在模组信息获知LCD视角相关信息,再辅助用主观测试

 主观测试方法如下图:

 

8、NTSC(色域)

评分标准

NTSC

评分

N<50%

50

50%≤N<60%

60

60%≤N<70%

70

70%≤N<80%

80

N≥80%

100

Color field:图际照明委员会CIE制定了CIE1931RGB系统,规定将700nm的红,546.1nm的绿和438.8nm的蓝作为三原色。

色域和lcd的color filter直接相关,因为color filter就决定哪些波长的R,G,B通过虑光片。这样便会影响R,G,B在CIE中的坐标。

通过测试量RGB 3基色在色彩空间的X,Y坐标得出color field.

仪器:CA310

需要测试红,绿,蓝三张图片,色域坐标,并进行计算。

计算方如下:

 

 

9、gamma

显示器的gamma参数(灰度系数)设定定义了中间影调的亮度,是表示从白色到黑色变化的曲线系数。

较低的gamma设定会得到较亮的中间影调和较多的暗部细节。反之较高的gamma,会有较多的亮部细节。

 

光学仪器:CA310

需辅助图片,32或64灰阶图片,测试每一张图片亮度, 记录下来,并根据一定的计算绘制成亮度曲线.

(有些excel工具会自动填入测试相关数据,会自动进行计算生成同gamma曲线图)

 

10、色彩串扰

 

评分标准

1、串扰标准值5%;
2、四个方向最大值等于标准,得60分;
3、四个方向最大值低于标准1%,加2分,直到满分;                                                      

 4、四个方向最大值高于标准1%,直接清零。

 

仪器:CA310

需辅助图片:(可以请会photoshop的同事制作).

 

 

11、最低亮度

测试方法

调整手机亮度至最暗,测量显示白画面时背光亮度。

评分标准

亮度等于10 lux得满分,每低于或高于1 lux,扣20分,直到清零。

仪器CA310:

辅助:白色图片

 

 

参考文档:

20130604_Display_Performance_Benchmark_SOP_V0 5_for_customer.pdf

 

附上品牌公司客观测试具体测试表格数据:

 

 



最新知识
### 手机相机影像质量的主客观测试方法 #### 主观测试方法 主观测试依赖于人类观察者的感知,通过一系列精心设计的标准图片或场景来评估图像的质量。由于人眼是最终接收图像的器官,因此这种评价方式被认为最贴近用户的实际体验[^3]。 对于手机摄像头而言,在进行主观测评时通常会选择具有代表性的场景,比如风景、人物肖像等,并邀请多位受过训练的评审员参与评分。这些评审员会对诸如清晰度、色彩准确性等方面给出打分。为了减少个人偏好带来的偏差,一般采用多人次重复实验的方式获取较为可靠的统计数据作为评判依据。 此外,还会特别关注一些容易影响用户体验的因素,如白平衡调整是否自然、高动态范围(HDR)表现如何以及是否存在明显的光学缺陷等问题[^5]。 #### 客观测试方法 相比之下,客观测试更侧重于利用自动化工具技术手段量化分析图像特征参数。这类方法能够提供精确的数据支持并实现高效的大规模样本检测。常用的设备包括但不限于DxOmarkImatest等专业级软硬件平台[^2]。 具体来说: - **视觉分辨率**:测量镜头所能分辨最小细节的能力; - **彩色还原与白平衡**:检验成像系统能否忠实再现原始景物的颜色属性; - **成像均匀度**:考察整个画面上各部分亮度的一致性情况; - **曝光量误差**:确认自动曝光机制工作精度; - **防抖性能(EIS)**:评估电子防抖算法对抗轻微震动干扰的效果[^4]。 上述各项指标均按照国家标准《数字(码)照相机通用规范》或是行业标准《数字移动终端图像及视频传输特性技术要求测试方法》来进行严格的校验流程[^1]。 ```python # 示例Python代码用于计算PSNR (Peak Signal-to-Noise Ratio),这是衡量两幅图像之间差异的一个重要客观指标之一。 import numpy as np from skimage.metrics import peak_signal_noise_ratio as psnr def calculate_psnr(image_true, image_test): """ 计算两张灰度图之间的峰值信噪比 参数: image_true : ndarray 原始无噪声图像. image_test : ndarray 测试图像. 返回: float PSNR值. """ return psnr(image_true, image_test) # 假设imageA imageB 是两个待比较的numpy数组形式的图像数据 psnr_value = calculate_psnr(imageA, imageB) print(f"The Peak Signal to Noise Ratio is {psnr_value:.2f} dB.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值