Preserving guest memory across kexec

The final session in the memory-management track at the 2022 Linux Storage, Filesystem, Memory-management and BPF Summit (LSFMM) was run remotely by James Gowans and David Woodhouse. It was titled "user-space control of memory mappings", with a subtitle of "letting guest memory and state survive kexec". Some options were discussed, but the real work is clearly yet to be done.
2022 年 Linux 存储、文件系统、内存管理和 BPF 峰会(LSFMM)的内存管理分会最后一个会议由 James Gowans 和 David Woodhouse 远程主持,主题为“用户空间控制内存映射(user-space control of memory mappings)”,副标题是“让客户机内存和状态在 kexec 后继续存在(letting guest memory and state survive kexec)”。会议讨论了一些实现方案,但显然真正的工作还远未完成。

The use case in question, Gowans began, is a live update of a hypervisor done with the kernel's kexec functionality. To carry this out, the state of all running virtual machines is serialized to persistent storage, then kexec is used to boot into the updated hypervisor. After that, the virtual machines can all be restarted. The desire is to preserve the state of guest memory over the reboot, which means this memory cannot be managed by the host kernel in the traditional way; instead, the kernel should stay away from that memory and let user space manage its allocation to virtual machines. They have been looking at "sidecar virtual machines" as a way to implement this functionality.
Gowans 介绍说,该用例是利用内核的 kexec 功能实现虚拟机监控程序(hyper

### 含义 “Positivity - Preserving”可直译为“保正性”,在数学和计算科学领域,它指的是在数值计算或算法处理过程中,保证某些物理量(如密度、浓度、概率等)始终保持非负的特性。例如在流体力学的数值模拟中,流体的密度不能为负,算法需要具备保正性以确保模拟结果的物理合理性。 ### 应用 - **流体力学**:在计算流体力学(CFD)中,求解欧拉方程或纳维 - 斯托克斯方程时,保正性对于保证密度、压力等物理量的非负性至关重要。比如在模拟超音速流、燃烧过程等复杂流动时,保正性的算法能避免出现非物理的负密度或负压力,从而得到更准确的模拟结果[^1]。 - **金融数学**:在期权定价模型、风险评估等金融领域的计算中,资产价格、概率分布等通常要求是非负的。保正性的数值方法可以用于确保金融模型计算结果的合理性,避免出现负的资产价格或不合理的概率分布。 - **图像处理**:在图像滤波、增强等处理过程中,像素值代表图像的亮度或颜色信息,通常要求为非负。保正性的算法可以防止在处理过程中出现负的像素值,避免图像出现失真或非物理的效果。 ### 相关技术 - **有限体积法(FVM)**:有限体积法是CFD中常用的数值方法,通过构造合适的通量函数和离散格式,可以实现保正性。例如,采用一些具有保正性的通量限制器,如Minmod、Superbee等限制器,可以在保证数值稳定性的同时,确保物理量的非负性。 ```python # 简单的Minmod限制器示例 def minmod(a, b): if a * b <= 0: return 0 elif abs(a) <= abs(b): return a else: return b ``` - **高阶重构技术**:高阶重构技术可以提高数值解的精度,但可能会破坏保正性。因此,一些研究提出了保正性的高阶重构方法,如WENO(加权本质无振荡)格式的保正性改进版本。这些方法通过对重构过程进行特殊处理,确保重构后的物理量满足保正性要求。 - **基于物理信息的神经网络(PINNs)**:在求解偏微分方程时,PINNs可以结合物理信息和神经网络的强大拟合能力。为了实现保正性,可以在神经网络的训练过程中加入保正性约束,例如通过惩罚项的方式,使得网络输出的物理量始终保持非负。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mounter625

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值