【bzoj1901】Dynamic Rankings(整体二分)

Description

给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题。你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令。对于每一个询问指令,你必须输出正确的回答。 第一行有两个正整数n(1≤n≤10000),m(1≤m≤10000)。分别表示序列的长度和指令的个数。第二行有n个数,表示a[1],a[2]……a[n],这些数都小于10^9。接下来的m行描述每条指令,每行的格式是下面两种格式中的一种。 Q i j k 或者 C i t Q i j k (i,j,k是数字,1≤i≤j≤n, 1≤k≤j-i+1)表示询问指令,询问a[i],a[i+1]……a[j]中第k小的数。C i t (1≤i≤n,0≤t≤10^9)表示把a[i]改变成为t。

Input

对于每一次询问,你都需要输出他的答案,每一个输出占单独的一行。

Sample Input

5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6

HINT

20%的数据中,m,n≤100; 40%的数据中,m,n≤1000; 100%的数据中,m,n≤10000。

题解:整体二分。
做了一些题,对CDQ分治和整体二分有了更清晰的区分。
首先,CDQ分治最强调一个词:时间顺序。这也是它是离线做法的原因。CDQ分治更像是一种归并,先做左边,再做右边,然后处理左修改右查询的。
但整体二分本质上来讲是一种二分,只不过二分了一堆东西。它的操作和答案两个区间是同时进行二分的,每次处理一定范围内的操作,给这部分的答案划定一个更准确的范围,直到找到正确答案。
所以说两者区别蛮大的。

这道题,对于询问操作,如果比mid小的数大于k-1个,那么就将它放到左边,否则就将它放到右边;对于修改操作,如果修改的数小于mid,即对于左序列的二分有影响,就将它放到左边,否则就将它放到右边。
代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long long
#define inf 0x7f7f7f7f
#define N 30005
#define lb(x) (x&(-x))
using namespace std;
ll read()
{
    ll x=0,f=1;
    char c=getchar();
    while(c<'0' || c>'9') {if(c=='-') f=-1;c=getchar();}
    while(c<='9' && c>='0') {x=x*10+c-'0';c=getchar();}
    return x*f;
}
struct nod
{
    int op,x,y,k,id,cur;
}q[N],tmp[N];
int n,m,x,y,z,tot,a[N],Count,ans[N],t[N],tmpp[N];
char c[5];
bool mark[N];
void add(int x,int v)
{
    while(x<=n)
    {
        t[x]+=v;
        x+=lb(x);
    }
}
int query(int x)
{
    int ret=0;
    while(x)
    {
        ret+=t[x];
        x-=lb(x);
    }
    return ret;
}
void solve(int l,int r,int L,int R)
{
    if(l>r) return ;
    if(L==R)
    {
        for(int i=l;i<=r;i++) if(q[i].op==3) ans[q[i].id]=L;
        return ;
    }
    int mid=(L+R)>>1;
    for(int i=l;i<=r;i++)
    {
        if(q[i].op==1 && q[i].y<=mid) add(q[i].x,1);
        else if(q[i].op==2 && q[i].y<=mid) add(q[i].x,-1);
        else if(q[i].op==3) tmpp[i]=query(q[i].y)-query(q[i].x-1);
    }
    for(int i=l;i<=r;i++)
    {
        if(q[i].op==1 && q[i].y<=mid) add(q[i].x,-1);
        else if(q[i].op==2 && q[i].y<=mid) add(q[i].x,1);
    }
    int cnt=0;
    for(int i=l;i<=r;i++)
    {
        if(q[i].op==3)
        {
            if(q[i].cur+tmpp[i]>=q[i].k) cnt++,mark[i]=1;
            else q[i].cur+=tmpp[i],mark[i]=0;
        }
        else
        {
            if(q[i].y<=mid) cnt++,mark[i]=1;
            else mark[i]=0;
        }
    }
    int l1=l,l2=l+cnt;
    for(int i=l;i<=r;i++)
    {
        if(mark[i]) tmp[l1++]=q[i];
        else tmp[l2++]=q[i];
    }
    for(int i=l;i<=r;i++) q[i]=tmp[i];
    solve(l,l1-1,L,mid);solve(l1,l2-1,mid+1,R);
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
    {
        a[i]=read();
        q[++tot].op=1;q[tot].x=i;q[tot].y=a[i];q[tot].id=0;
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%s",c);
        x=read(),y=read();
        if(c[0]=='C')
        {
            q[++tot].op=2;q[tot].x=x;q[tot].y=a[x];q[tot].id=0;
            q[++tot].op=1;q[tot].x=x;q[tot].y=y;q[tot].id=0;
            a[x]=y;
        }
        else
        {
            z=read();
            q[++tot].op=3;q[tot].x=x;q[tot].y=y;q[tot].k=z;q[tot].id=++Count;
        }
    }
    solve(1,tot,0,inf);
    for(int i=1;i<=Count;i++) printf("%d\n",ans[i]);
    return 0;
}
发布了83 篇原创文章 · 获赞 3 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览