【BZOJ1563】【NOI2009】诗人小G(dp+决策单调性)

4 篇文章 0 订阅
2 篇文章 0 订阅

Description
这里写图片描述

Input
这里写图片描述

Output

对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出”Too hard to arrange”(不包含引号)。每个输出后面加”——————–”

Sample Input

4

4 9 3

brysj,

hhrhl.

yqqlm,

gsycl.

4 9 2

brysj,

hhrhl.

yqqlm,

gsycl.

1 1005 6

poet

1 1004 6

poet

Sample Output

108


32


Too hard to arrange


1000000000000000000


【样例说明】

前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。

HINT

总共10个测试点,数据范围满足:

测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。

题解:%%%PoPoQQQ大神!!!%%%byvoid大神!!!
首先,可以列出dp方程,这样可得30分(因为有个讨厌的指数)。
列出了dp方程但是只能拿暴力分数的时候,就要想怎么优化了(除非dp根本是错的)。决策单调性我不会证(我是连导数都不会的蒟蒻),但是打表还是可以看出来的。
由于列出的方程是这样的:
这里写图片描述
我们可以看出这是一个1D1D动态规划,那么决策区间就是连续的段落,于是我们维护一个上凸壳,每次更新的时候用二分就好了。
注意数据比较大,用long double 算完转long long。
代码如下:

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#define ll long double
#define inf 9000000000000000000
#define MAX 1000000000000000000LL
using namespace std;
int t,n,l,p,top;
ll sum[100005],f[100005],from[100005];
char ch[100005][35];
struct nod
{
    int l,r,p;
    nod(){}
    nod(int a,int b,int c):l(a),r(b),p(c){}
}q[100005];
ll read()
{
    ll x=0;
    char c=getchar();
    while(c<'0' || c>'9') c=getchar();
    while(c<='9' && c>='0'){x=x*10+c-'0';c=getchar();}
    return x; 
}
ll pow(ll x)
{
    if(x<0) x=-x;
    ll ans=1;
    for(int i=1;i<=p;i++) ans*=x;
    return ans;
}
ll cal(int j,int i)
{
    return f[j]+pow(sum[i]-sum[j]+(i-j-1)-l);
}
int find(nod a,int b)
{
    int l=a.l,r=a.r;
    while(l<=r)
    {
        int mid=l+r>>1;
        if(cal(a.p,mid)<cal(b,mid)) l=mid+1;
        else r=mid-1;
    }
    return l;
}
void dp()
{
    int hd=1,tl=0;
    q[++tl]=nod(0,n,0);
    for(int i=1;i<=n;i++)
    {
        if(hd<=tl && i>q[hd].r) hd++;
        f[i]=cal(q[hd].p,i);from[i]=q[hd].p;
        if(hd>tl || cal(i,n)<=cal(q[tl].p,n))
        {
            while(hd<=tl && cal(i,q[tl].l)<=cal(q[tl].p,q[tl].l)) tl--;
            if(hd>tl) q[++tl]=nod(i,n,i);
            else
            {
                int t=find(q[tl],i);
                q[tl].r=t-1;
                q[++tl]=nod(t,n,i);
            }
        }
    }
}
int main()
{
    t=read();
    while(t--)
    {
        n=read(),l=read(),p=read();
        for(int i=1;i<=n;i++) scanf("%s",ch[i]);
        for(int i=1;i<=n;i++) sum[i]=sum[i-1]+strlen(ch[i]);
        dp();
        if(f[n]>MAX) printf("Too hard to arrange\n");
        else printf("%lld\n",(long long)(f[n]));
        printf("--------------------\n");
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值