机器学习(Machine Learning,简称ML)是一种人工智能(Artificial Intelligence,简称AI)的分支,致力于让计算机系统通过学习能力从数据中提取模式、改善性能,而无需明确地进行编程。机器学习的主要目标是让计算机系统具备类似人类学习的能力,能够根据经验不断改进自己的性能。
在传统的程序设计中,开发者需要明确编写规则和算法来解决特定问题。而在机器学习中,算法通过对大量数据的学习来推断规律,从而在面对新数据时能够做出预测或做出决策。
机器学习的主要类型包括:
监督学习(Supervised Learning): 算法通过学习输入数据和对应的输出标签之间的关系,从而能够对新的输入数据进行预测。典型的任务包括分类和回归。
无监督学习(Unsupervised Learning): 算法从未标记的数据中学习模式和结构,没有明确的输出标签。典型的任务包括聚类和降维。
强化学习(Reinforcement Learning): 算法通过与环境的交互学习,根据执行的动作获得奖励或惩罚。目标是通过试错的过程来学习最优的策略。
机器学习应用广泛,涵盖了许多领域,如自然语言处理、图像识别、医学诊断、金融预测等。关键的步骤包括数据收集、特征工程、模型选择、训练、评估和部署。
常见的机器学习框架和库包括TensorFlow、PyTorch、Scikit-learn等,它们提供了丰富的工具和算法,使开发者能够更方便地构建和部署机器学习模型。